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1 My Research Experience

Involving high school students in research has been a long standing practice in the experimental

sciences. However, it has only been recently that high school students have been involved in

mathematics research in significant numbers. The realm of mathematics is in many ways both

the most and least accessible field to conduct research. Mathematics requires none of the

complex and expensive lab equipment or test specimens required to do work in many other

fields. For most mathematics research, all is needed are pencil, paper, computer, and a hearty

interest and determination. But, on the other hand, most interesting mathematics problems

are often very inaccessible to students with a high-school math background. To comprehend

the problems, a great deal of independent study in the background material is often needed.

Thus, achieving success in mathematics research lies in the selection of appropriate problems.

An ideal problem should not require much background reading, have probable partial results

are probable, and have new results that are likely publishable. Regarding the limited math

background of a high school student, a math mentor is invaluable in providing perspective on

potential problems, having the experience to understand which problems seem more accessible.

A mentor is also important in being able to know what types of background knowledge are

necessary to understand the problems, so that the student can spend less time trying to

understand the problem and more time actually solving it.

I was one of about 75 extremely lucky students from around the world selected to attend

the Research Science Institute (RSI) last summer. The RSI is an intensive 6-week summer

program for rising high school seniors held at the Massachusetts Institute of Technology, where
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students are guided by professors, graduate students, and researchers in the Boston area. In

addition to the wonderful research opportunities, one of the greatest benefits of participating

in the RSI lies in the interaction with the other brilliant high school students. About a third

of the students attending are international, hailing from countries such as Bulgaria, China,

Germany, Saudi Arabia and Singapore. I came away from the RSI having made a number of

wonderful friends, many of whom I have no doubt will be among the big names in science in

the near future.

Mr. Brian Lehmann, a graduate student in the MIT Mathematics Department, served as

my mentor at RSI. He proposed a number of problems to me, and we spent a few days debating

the merits of choosing to work on each. I eventually decided on a number theory problem

regarding complete base polynomials, which are the extension of the concept of integer bases

to the polynomials. Further information regarding my research is detailed in section 2.

After deciding on a research topic, I realized that I understood very little of the underly-

ing mathematical machinery behind the proofs previously made on the topic. For nearly an

entire week, I spent many hours a day in MIT’s Hayden Library, immersing myself in intro-

ductory books on number theory and abstract algebra. It was a near-overwhelming amount

of new notations, concepts, and ideas to absorb in such a short period of time, but I enjoyed

the challenge and enthusiastically threw myself into mastering the mathematics necessary to

solve my problem. In that short period of time, I learned the basics of group theory, radix

representations, and residue classes, just to name a few.

Once equipped with this new knowledge and feeling confident enough to begin work on

my problem, I was left with approximately four weeks for research. I spent much of the time

working in computer labs or in quiet classrooms, solving the case analysis and theorems needed

to complete my proof. I also heavily relied on the Mathematica computer program, eventually

writing my own code that allowed me to test specific examples, which proved to be extremely

useful in my research. Throughout this entire process, my mentor gave me helpful suggestions

on how to clearly express my work in a paper and how to systematically analyze overwhelming

quantities of cases. However, as was true with many of my peers also doing math research, the

entire experience was very independent, and I had a significant amount of freedom to decide

when, where, and how I wanted to work. Near the end of the RSI, I was able to complete the

proof that I had set out as my goal for the program.

2



Although I had reached the results that I wanted, the entire concept of base polynomials

and its applications greatly intrigued me and I continued to study them once RSI had ended

and I returned home. No longer having MIT’s considerable resources at my disposal, I relied

more on email correspondences with leading researchers in my field to help me decide on

directions for further study. In the month following the RSI, I managed to isolate a number of

important counterexamples as well as formulated several conjectures regarding the behavior

of more complex base polynomials.

The RSI gave me an invaluable opportunity to conduct independent research. I felt that,

though the experience was highly abbreviated, it was one of the most eye-opening 6 weeks

of my life, and greatly reinforced and narrowed my passions for mathematics and science.

My research experience taught me that dedication, commitment, and passion are necessary

to achieve the results that you want. No one wants to be working on a problem that they

don’t truly enjoy, so finding a topic in a field which you can be passionate about is essential

to having both enjoyable and productive research.

I was extremely fortunate that my research actually managed to produce substantial results

in the brief weeks I spent at RSI. However, I am much more thankful that I had the chance

to taste what an actual research experience is like, rather than the fact that I created an end

product. I am certainly proud of what I achieved, but the learning experience itself was far

more valuable to me than any awards won.

2 My Research Paper

My paper is entitled “On the Reducible Quintic Complete Base Polynomials.” The background

and main results with brief, summarized proofs are given as follows and the full version

is available from the author. Hopefully this piece will inspire other interested high school

students to cast away their reservations and pursue their own independent research.

2.1 Introduction

It is well known that every n ∈ N can be expressed uniquely as

n = c0 + c1b+ · · ·+ cmb
m,
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where the integer base, or radix, b ≥ 2, the coefficient cm 6= 0, and ci ∈ {0, 1, 2, · · · , b − 1}.

This concept has been generalized to different bases and numeration systems.

Grunwald [7] studied the negative bases, and in particular showed that every n ∈ Z admits

a unique representation

n = d0 + d1(−b) + · · ·+ d`(−b)`,

where the base b ≥ 2, the coefficient d` 6= 0 and di ∈ {0, 1, 2, · · · , b − 1}. A famous example

that used negative bases is the negadecimal system.

Knuth [9] observed that the Gaussian integers Z[i] admit a unique representation with

radix b = −1 + i. In last decade, these concepts have been further extended to the following

generalized base representations.

Definition. Let

B(x) = xm + bm−1x
m−1 + · · ·+ b0 ∈ Z[x] (1)

and S = {0, 1, 2, · · · , |b0| − 1}. If every P (x) ∈ Z[x] has an expression of the form

P ≡ Q (mod B),

where Q(x) ∈ Z[x] has all coefficients in S, then we say that (B, S) is a complete base (CB)

or canonical number system (CNS). In the sequel we use the term complete base (CB) and

refer to B(x) as a CB polynomial.

Not all polynomials B(x) will form a complete base. It is easy to show that B(x) = x+ b0

with b0 ≥ 2 forms a complete base. For the quadratic polynomials B(x) = x2+b1x+b0, Gilbert

[6] proved that B is a CB polynomial if and only if −1 ≤ b1 ≤ b0 and b0 ≥ 2. It is natural

to ask whether there exists a complete classification of all CB polynomials. Unfortunately,

existing research results indicate that the structure of CB polynomials (even polynomials of

only degree three) is very complicated and only partial results have been achieved. Recently,

Kane [8] found a class of CB polynomials which have k distinct integer roots with k ≤ 4.

The purpose of this paper is to characterize completely reducible quintic CB polynomials.

Our results extend Kane’s recent work to k = 5. We also provide a Mathematica program

that determines whether a given polynomial B(x) is a CB polynomial or not.
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2.2 Preliminaries

In this section, we review some existing results regarding CB polynomials.

Theorem 1 (Pethö [11], Kane [8]). If B(x) is a CB polynomial, then

1. all roots of B(x) lie outside the closed unit disk, and

2. all real roots of B(x) are less than −1.

The linear and quadratic CB polynomials are completely determined by the comparative

sizes of their coefficients. Thus, we are interested in generally characterizing CB polynomials

by the sizes of their coefficients.

There are three special cases that necessitate our attention. The first describes the “mono-

tonicity condition” on the coefficients of CB polynomials.

Theorem 2 (Pethö [10]). If B(x) has no roots on the closed unit disk and its coefficients

satisfy

b0 ≥ 2 and b0 ≥ b1 ≥ · · · ≥ bm−1 > 0,

then B is a CB polynomial.

The second theorem describes the “dominance condition” on the coefficients of CB poly-

nomials.

Theorem 3 (Akiyama and Pethö [3]). If B(x) has no roots on the closed unit disk and its

coefficients satisfy

b2, . . . , bm−1 ≥ 0,
m∑

k=1

bk ≥ 0 and b0 >

m∑
k=1

|bk|,

then B is a CB polynomial.

The third result characterizes completely reducible polynomials of degree four and below.

Theorem 4 (Pethö [10], Kane [8]). If B is a polynomial whose roots are k distinct integers

less than −1, if k ≤ 4, and S = {0, 1, . . . , b0 − 1}, then (B, S) forms a complete base.

Unfortunately, few results exist for k ≥ 5. Kane [8] provides a counterexample for k = 9,

showing that the analogue of Theorem 4 does not hold for arbitrary k.

5



2.3 The characterization of quintic complete base polynomials

In this section we extend Theorem 4 to completely reducible quintic polynomials. The follow-

ing theorem provides an alternate requirement for (B, S) forming a complete base.

Theorem 5 (Kane [8]). (B, S) forms a complete base if and only if B has no roots on the

closed unit disk and there exists no polynomial T ∈ Z[x] and natural number n so that when

B ·T is reduced modulo 1−xn to a polynomial of degree at most n−1 it is a nonzero polynomial

with coefficients in S.

For any given B that satisfies the two conditions of Theorem 1, the maximum and minimum

bounds for the coefficients of T are determined as follows

Lemma 6 (Kane [8]). If B has only negative integer roots other than −1 and T ∈ Z[x] has

degree less than n so that B(x)T (x) ≡ U(x) (mod 1− xn) where U(x) has degree less than n

and coefficients in {0, 1, . . . , b− 1}, then all of the coefficients of T are in the interval[
b− 1

2

(
− 1

B(−1)
+

1

B(1)

)
,
b− 1

2

(
1

B(−1)
+

1

B(1)

)]
.

In particular, for the quintic case, we have

Corollary 7. If

B(x) = (x+ α)(x+ β)(x+ γ)(x+ δ)(x+ ε) = x5 + p1x
4 + p2x

3 + p3x
2 + p4x+ p5, (2)

where α, β, γ, δ, ε are distinct integers greater than or equal to 2, then the coefficients of T are

in the set {−2,−1, 0, 1, 2, 3}.

We are now in the position to characterize completely reducible quintic CB polynomials.

Theorem 8. If B is a polynomial given by (2) whose roots are five distinct integers less than

−1, and S = {0, 1, . . . , p5 − 1}, then (B, S) forms a complete base.

The following lemma provides considerable machinery to prove Theorem 8.

Lemma 9. If B(x) is a polynomial given by (2) whose roots are five distinct integers less than

−1, then the following inequalities hold:
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1. 2p5 + p4 > 3p3 + 3p2 + 3p1 + 3,

2. p5 + 2p4 > 3p3 + 3p2 + 3p1 + 3,

3. 2p5 + p3 > p4 + 3p2 + 3p1 + 3,

4. 2p5 > p3 + 3p2 + 3p1 + 3,

5. p5 + p4 > 2p3 + 3p2 + 3p1 + 3,

6. p4 > p3 + 2p2 + 2p1 + 2,

7. p5 > 2p2 + 2p1 + 2,

8. p5 > p3 + 3p1 + 3,

9. 2p5 > p4 + 2p2 + 3p1 + 3,

10. p5 + p4 + p2 > 3p3 + 3p1 + 3,

11. 2p5 + 2p2 > 3p3 + 3p1,

12. p4 + p2 + 2 > 2p3 + 2p1

13. p3 > 2p2 + 2p1 + 2,

14. p5 + p3 > p4 + p2 + 2p1 + 1,

15. p5 + 2p3 + p1 > p4 + 2p2 + 2,

16. 2p4 > 3p3 + 4,

17. 2p4 + 3p2 > 4p3 + 4p1 + 4,

18. p2 > 2p1 + 1,

19. p1 > 2.

The proof is based on the following well-known fact regarding symmetric functions:

Proposition 10. Let f(x1, x2, . . . , xn) be symmetric, i.e.,

f(x1, x2, . . . , xn) = f(σ(x1, x2, . . . , xn)),

where σ(x1, x2, . . . , xn) is a permutation of (x1, x2, . . . , xn). If f is continuous and increasing

for each xi in ai ≤ xi <∞, then

f(x1, x2, . . . , xn) ≥ f(a1, a2, . . . , an).

Now, we turn to the proof of Theorem 8.

Proof of Theorem 8. Suppose for the sake of contradiction that (B, S) does not form a

complete base. Since B has no roots on the closed unit disk, by Theorem 5, we just have to

prove that there exists no polynomial T ∈ Z[x] of degree less than n so that when B · T is

reduced modulo 1− xn the result has coefficients in S. Suppose that such a T does exist. Let

T (x) = t0 + t1x+ t2x
2 + · · ·+ tn−1x

n−1 (3)

and

B · T = s0 + s1x+ · · ·+ sn−1x
n−1 + (1− xn)q(x), (4)

where si ∈ S for all 0 ≤ i ≤ n− 1 and

q(x) = q0 + q1x+ q2x
2 + q3x

3 + q4x
4.

Then, in general, for 0 ≤ k ≤ n− 1, we have

sk = p5tk + p4tk−1 + · · ·+ p1tk−4 + tk−5, (5)

7



where the indices of the ti are taken modulo n.

We now show that for any given polynomial T , at least one of the coefficients of (5) is

either negative or greater than p5 − 1. This contradicts to the assumption that sk ∈ S.

First, we demonstrate that thirty cases of coefficient strings cannot appear in T for the

given reasons, which imply the full cases.

Next, we explicitly analyze and prove the nonexistence of one typical coefficient strings:

Case 1 (−2/(−1),−2). The derivations of rest cases are analogous.

For Case 1, the possible coefficients for the xk term of B · T would be

−2p5 − 2p4 + ap3 + bp2 + cp1 + d or − 2p5 − p4 + ap3 + bp2 + cp1 + d.

These two terms are achieved by tk = −2, tk−1 = −2/(−1). To verify that the coefficient string

(−2/(−1),−2) cannot appear in a T as in Theorem 5, we show that both of these coefficients

in B · T are negative. We only address

−2p5 − p4 + ap3 + bp2 + cp1 + d < 0 (6)

because confirming (6) immediately implies both terms to be negative and disproves both

(−2,−2) and (−1,−2).

It is easy to see that (6) is equivalent to

2p5 + p4 > ap3 + bp2 + cp1 + d,

and by Corollary 7, a, b, c, d ∈ {−2,−1, 0, 1, 2, 3}. Thus the right hand side of the inequality

is maximized when a, b, c, d = 3 and (6) is valid by Lemma 9.1.

2.4 A Complete Base polynomial test program

In this section we introduce a Mathematica program which determines whether a given poly-

nomial B(x) is a CB polynomial or not.

The principle of this program is based on Brunotte’s mapping. Define τ : Zm → Zm by

τ(x1, x2, · · · , xm) =

(
−sign(b0)b

∑m
i=1 bixi

b0
c, x1, x2, · · · , xm−1

)
.

Brunotte [5] proved that

Theorem 11. If E ⊆ Zm has the following properties:

• (1, 0, . . . , 0) ∈ E,
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• −E ⊆ E,

• τ(E) ⊆ E,

• For every x ∈ E there exists some k ∈ N such that τ k(x) = 0.

then B is a CB polynomial.

Theorem 11 provides the following algorithmic process to test whether B(x) is a CB poly-

nomial or not.

1. Begin with E1 = {(0, 0, . . . , 0), (−1, 0, . . . , 0), (1, 0, . . . , 0)},

2. If Ei is defined for i < k then Ek is defined by Ek = Ek−1 ∪ τ(Ek−1) ∪ (−τ(−Ek−1)),

3. If Ek 6= Ek−1 then repeat step (2), otherwise go to step (4),

4. For each x ∈ Ek, confirm that there exists some l ∈ N such that τ l(x) = 0.

Note that Ek = −Ek for all k. If B(x) has no roots on the closed unit disk, step (4) will

terminate in a finite number of steps. In addition, because τ is eventually contractive, the set

Ek(k = 1, 2, . . .) must be uniformly bounded. By the discreteness of Zm in Rm and Ek ⊃ Ek−1,

step (2) will also terminate in a finite number of steps.

Implementing this algorithm in Mathematica, we establish a CB polynomial test program

(See Appendix for code), which enables us to experiment with higher degrees of polynomials,

to decide if the potential result points in the desired direction and to formulate credible

conjectures. By using this program, we have the following interesting observations.

1. Theorem 8 does not hold for quintic polynomials with non-real roots. For example,

(x + 2)(x2 − 2x + 2)(x2 − x + 3) and (x + 2)(x + 3)(x + 4)(x2 − 2x + 2) are not CB

polynomials. Thus, the completely reducible condition in Theorem 8 is necessary.

2. It is well known that the product of a linear and a quadratic CB polynomial is a CB

polynomial. However, this no longer holds for higher degree polynomials. For example,

the product of both CB polynomials x2 − x + 2 and x2 − x + 3 is no longer a CB

polynomial. In quintic cases, the counterexample is given by the CB polynomial pair

x3 + 80x2 + 117x+ 89 and x2 − x+ 2.

3. If B(x) =
∏n

i=2 (x + i), then n = 10 yields Kane’s [8] counterexample. The program

shows that B(x) is not a CB polynomial for 10 ≤ n ≤ 16, however, B(x) =
∏11

i=3 (x+ i)

is a CB polynomial.
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4. Let B(x) =
∏n

i=1 (x+ ri) with ri ≥ 2. For sufficient large roots, for example,

n∑
i=1

1

ri

≤ 1 (7)

the program shows that B(x) is a CB polynomial. In light of those results, in general, we

conjecture that B(x) is a CB polynomial if (7) holds. Surprisingly, Newton’s inequalities

for symmetric functions show that (7) implies Pethö’s monotonicity condition in Theorem

3 and so yields a rigorous proof of this conjecture. We will address the details in a

forthcoming paper.

2.5 Concluding remarks

We have characterized the completely reducible quintic CB polynomials. This is the best

possible result regarding the completely reducible polynomials so far. Theoretically, by using

the same argument, one could analyze equivalent assertions for k ≥ 6. However, this would

widen the range of possible coefficients of polynomial T as dictated by Lemma 6, greatly

increasing the number of coefficient strings which must be examined. Meanwhile, our CB

polynomial test program yields that the analogue of Theorem 4 fails for k ≥ 9 in general.

At this point, there is no method that is guaranteed to succeed in characterizing complete

reducible CB polynomials of kth degree with 6 ≤ k < 9, and new ideas are required.
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Appendix
Complete base polynomial

test program code in Mathematica

P1 = [INSERT B(X) HERE];
LP = CoefficientList[P1, x];
Print[Pl];
Clear[L1];
r = x /. NSolve[P1 == 0, x];
Print[r];
For[i = 1, i <= Length[r], i++, If [Abs[Part[r, i]] < = 1,
Print[‘‘Root on Closed Unit Disk’’];
Abort[]];];
C1 = Drop[CoefficientList[P1, x], 1];
L ={-First[IdentityMatrix[Length[C1]]],
-Last[IdentityMatrix[Length[C1]]],
0*First[IdentityMatrix[Length[C1]]]};
q0 = P1 /. x -> 0;
P = Function[z, Join[-Sign[q0]Floor[z.C1/Abs[q0]],Drop[z, -1]]];
P1 = Function[z, Join[-Sign[q0]Floor[z.C1 + Abs[q0] - 1)/Abs[q0]], Drop[z,-1]]];
While[True, L = Union[L, Map[P, L], Map[P1, L]];
If[Length[L] == L1, Print[L1];
Print[‘‘Contractive’’];
Break[]];
L1 = Length[L]; Print[L1]; ];
While[True, L = Union[Map[P, L]];
If[Length[L] == L1, If[Length[L] =!= 1, Print[L1];
Print[‘‘Periodic Elements’’];
Print[‘‘CBP’’];
Break[]; ];];
L1 = Length[L];
Print[L1]; ];
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