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Personal Section

I have been interested in mathematics since kindergarten.  I always loved

searching for and finding patterns in sequences of numbers.  I used to read whatever

information I could in order to learn more about the wonders of math.

In fifth grade I was part of my school’s program for gifted math students.  There

the teacher introduced me to a wonderful sequence of numbers called the Fibonacci

sequence, named after the 13th century mathematician Leonardo da Pisa Fibonacci.  She

gave me a list of the first 80 or so numbers in the sequence.  My first impression was an

amazement at how large these numbers seemed to get, and so quickly.  She showed me

how the sequence was formed:  each term was the sum of the two previous terms

beginning with 1, 1, 2, 3, 5, 8, ….  She showed me how the sequence showed up in the

turns of a pinecone and a sunflower.

Then she asked me to look in this sequence and find the only numbers that were

the same as their index.  Those were 1 and 5.  Then she asked me to find the only

numbers that were the square of their index.  Those were 1 and 144.  Are there any other

squares in this sequence?  I looked at the 80 numbers in front of me and saw no others.

She then told me that these were the only perfect squares in the Fibonacci sequence.

Could that really be possible?

I am sure many mathematicians remember how they learned about the Fibonacci

sequence.  When I learned about it, I began studying it and other sequences in search of

patterns.  In middle school I found a way to generate each number in the fourth diagonal

of Pascal’s triangle before I even knew about the binomial theorem.  Around the same



time I found a pattern in the first six perfect numbers and used it to successfully find the

seventh:  137,438,691,328.

In eighth and ninth grade I investigated prime numbers and looked for any

patterns that may be hidden in their randomness.  Obviously I was unsuccessful or

otherwise you would have heard of me.

In tenth grade I joined my high school’s research p rogram.  My teacher said that

we should start to look for ideas for an experimental research project.  I knew I wanted to

do math research while most of my peers would be doing science research.  So I looked

through many math journals for topics but all the articles were on topics far beyond my

knowledge.  I was a bit frustrated and considered waiting to begin research to later

because the research program did not require that I submit experimental research to

competitions until my senior year.

Fortunately, I had developed something of a habit of investigating various

mathematical problems that I came by.  In this case I was investigating something related

to a past International Mathematical Olympiad (IMO) question when I noticed a pattern

related to the question.  My investigation led to a conjecture that I was able to prove.

Now, let me talk about how I came to do the research that led to my Intel paper,

“Nonagonal Numbers in the Fibonacci Sequence and Related Diophantine Equations.”

Anyone who wants to do math research will, I am sure, find it invaluable to take a course

in number theory.  That is what I did the summer after tenth grade.  Part of that class was

a final project that required that each student research a topic on number theory.  Rather

than do literature research (studying what is known about a topic and then presenting

that), I decided to do my own original research and develop my own proof.



Taking a hint from my tenth grade experience, I took a question from my

textbook [5] which asked the reader to consider the numbers 1 and 36.  These are the first

integers that are square triangular numbers, that is they are both a square number and a

triangular number (I will define these later in the article).  The question asked the reader

to find the next one; and the next one.  Then it asked how many there were (I’ll give

away the answer in a few paragraphs).  Can you prove it?

That question was investigated and proven later in the book.  I decided to ask a

similar question for my research:  what are the pentagonal square numbers, those that are

simultaneously pentagonal and square numbers?  Well, that proved to be relatively

straightforward by following the book’s example.  The first two are 1 and 9801.  I made a

conjecture about the rest of them and proved it for my final project.

At the end of the summer, I became determined to do some research for eleventh

grade.  I quickly discovered that the results for square triangular numbers and pentagonal

square numbers as well as pentagonal triangular numbers were well known (see [3]).  I

decided to combine all three.  I asked the question:  what integers are pentagonal square

triangular numbers?

Well, there is an obvious one, namely 1.  Are there any others though?  Well, the

sets of square triangular numbers, pentagonal square numbers, and pentagonal triangular

numbers are all infinite.  Surely I must be able to find at least one more, if not infinitely

more, I thought.  That only goes to show how wrong intuition can be at times.  A few

months later I completed my proof that the only number that is simultaneously a

pentagonal, square, and triangular number is 1.  The most exciting thing about this for me



was that what I proved had never before been proven.  Or if it had, it had never been

published.

This was the second time that I had been told in one way or another that I could

search and search for integers of a certain form but would find only a select few.  Do you

remember the square Fibonacci numbers 1 and 144?

As I geared up for the summer after eleventh grade, I searched for a

mathematician to be my mentor as I did my senior year research.  With little success

within a hundred miles of my house, I reconnected with my number theory teacher from

the previous summer, Dr. Allison Pacelli from Williams College in Massachusetts, and

she said that she would love to work with me in my research.  I went up from where I live

in Long Island, New York to Williams College twice over the summer to work with her.

Since she was familiar with my work from the previous year, she had a few papers

available from which I might get my topic for research.

The paper I chose, which became my main reference for my research, proved

which numbers were heptagonal Fibonacci numbers [4].  I found other similar work on

the topic through MathSciNet, a database of reviews of over half a million articles on

mathematics sponsored by the American Mathematical Society [2].  The heptagonal case

was completed by B. Srinivasa Rao in 2003; the square case by J. H. E. Cohn in 1964;

and the triangular and pentagonal cases by Ming Luo in 1989 and 1996, respectively.

In each of these cases, each author proved that there were only a finite number of

integers of each form.  I decided to extend their results to a higher order of polygonal

number.  Originally, I looked at octagonal numbers in the Fibonacci sequence.  I hit a

snag and decided to apply what I had learned to the nonagonal case.  I slowed again but a



bit of insight overcame that obstacle.  Then with some perseverance and help and

encouragement from my mentor, I proved that the only nonagonal Fibonacci number is 1.

I recommended earlier that anyone interested in math research should take a

course in number theory.  The reason is because not only did all my work depend on what

I learned in that course but also because it opened up mathematical avenues that I really

had no idea were there.  I had the added fortune that my teacher became my research

mentor.  Perhaps the most important benefit that I gained from that course was the

knowledge of how to create rigorous mathematical proofs.  And those high school

geometry “proofs” do little to help the cause.  If you don’t take a course that teaches you

how to prove statements rigorously, and many different courses will, not only those in

number theory, I would recommend that you get your hands on some proofs and read

them to understand their structure and methodology.  However a course is ideal.

I have since taken three math courses outside of high school as a high school

student.  Understand that mathematics is not simply algebra, geometry, trigonometry,

statistics, and calculus.  Taking these courses, doing my research and reading others’

research has really helped me understand what mathematics is all about.  Mathematics is

a universal language.  Not universal in the sense that someone in every culture can do

mathematics but in the sense that anyone can do mathematics.  Mathematics is not about

using the Law of Cosines or integrating an expression.  Mathematics is about

understanding and proving that the Law of Cosines is correct or that integration by parts

or by some other method is valid.  Even more than that, mathematics is about recognizing

patterns, obvious or not, and establishing their verity.  Now, not everyone will become a



mathematician but everyone will do math.  My experiences with math may look far

different from others’ but mathematics’ universality ensures that we are all doing it.

Now, before I move on to discuss my Intel project, let me offer some advice

based on my experiences to those of you who want to do math research.  First, become

good friends with patience.  Second, expect to be surprised by sudden breakthroughs or

insights that you may have about a project.  In September of my senior year, I was still

working on my project.  I wanted to submit it to a competition that had an October

deadline.  I had become very concerned that I would not be able to submit it this

competition or maybe not even Intel, due in November.  Then, two weeks later I had

proven the theorem and two weeks after that my paper was completed, in its initial form

anyway.  However, I had learned to be very patient.  Even though the project wrapped up

in two weeks, I had been studying it, thinking about it, contemplating it, etc. for four

months.  Oftentimes, a research problem will take months at a minimum and years or

even decades of a mathematician’s time to complete.

My other recommendation for prospective math researchers is to find a mentor.

You will encounter mathematics that you do not understand but that does not mean you

cannot tackle a problem.  A dedicated mentor can help you overcome obstacles that you

may not be able to overcome or they can simply provide direction based on their

experience.  Since it is not always easy to find a mentor as my experience shows, I highly

recommend that you begin networking now.  Who do your parents or friends’ parents or

teachers or uncle’s college roommate’s second cousin know?  If you can find a

mathematician, it does not hurt to ask if they would be willing to work as a mentor for

your research.  If they can help, then great; if they can’t help, try another.



Additionally, I will recommend a few resources to help in your mathematical

endeavors.  First of all, I would recommend purchasing a mathematical program.  I have

used the student version of Stephen Wolfram’s Mathematica but I understand that others

such as Maple are just as good.  Not only can such a program be used as a calculator but

also in just about anything related to mathematics, physics, chemistry, etc.  Also, I would

highly recommend that you learn how to use LaTeX.  It makes it very easy to create free

professional-looking mathematical and scientific writing not only in creating expressions

and tables but also in creating structure within the paper.  I have used and would

recommend the Art of Problem Solving’s tutorial on how to obtain and use LaTeX [1].

Research Section

Once again, my project is entitled “Nonagonal Numbers in the Fibonacci

Sequence and Related Diophantine Equations.”  I have already defined the Fibonacci

sequence.  Let me now define nonagonal numbers by defining a more general term,

polygonal numbers.  The thr  polygonal number of order n  (or simply the thr  n -gonal

number) is given by the formula:

)]4()2[(2
1 −−−= nrnrP ,

where r  is a positive integer.

So from this we can define any order of polygonal number with ...,5,4,3=n

corresponding with triangular, square, pentagonal, … numbers, respectively.  So

nonagonal numbers ( 9=n ) are given by the formula:

2
)57( −= rr

N  ,



with the first few for ...,4,3,2,1=r  being ... 46, 24, 9, 1,=N .  I gave them earlier but let

me repeat the first few Fibonacci numbers:  1, 1, 2, 3, 5, 8, ….  Finally, a Diophantine

equation is a polynomial equation in which only integer solutions are allowed.  For

example, the two equations that I solved in my project are

16)57(54 222 ±−= yyx .

In the course of my research, I developed an original proof of a new theorem.  As

I stated earlier, I proved that the only nonagonal Fibonacci number is 1.  To understand

how I did this, first we must complete the square in the formula for a nonagonal number.

Then, since we are looking at Fibonacci numbers that are also nonagonal, we replace the

N  in this expression with nF .  Thus, for a Fibonacci number to be a nonagonal number,

the expression 2556 +nF  must be a perfect square (i.e. 1, 4, 9, 16, etc.).

Why do we do this?  Well, as I learned in my number theory course, there is a

rather simple way to determine that an expression is never a perfect square.  We employ

what is known as a Jacobi symbol, named after the 19th century mathematician Carl

Gustav Jakob Jacobi.  I will not define a Jacobi symbol here but if you want to know

what it is, check out [3] or [5] or any other text on number theory for that matter.  For

now I will say that essentially a Jacobi symbol tests whether or not a number or an

expression is related to a perfect square.  If it is then it may in fact be a perfect square.  If

it is not then it is never a perfect square.

So I used the Jacobi symbol in conjunction with the expression I derived earlier to

determine exactly when that expression was related to a perfect square.  For the cases that

it was, I then proved that the expression could be a perfect square only for a select few

values.  This then proved my theorem.



Now let me describe where the two Diophantine equations come from.  I used a

well known identity related to Fibonacci numbers but before I present it, I will define

another sequence of numbers that show up in this identity.  The sequence is known as the

Lucas sequence, named after the 19th century mathematician Eduoard Lucas, where the

thn  Lucas number is denoted nL .  The sequence is defined just like the Fibonacci

sequence in the sense that each term is the sum of the two previous terms but it begins

differently.  The first few terms are 1, 3, 4, 7, 11, ….

The identity is n
nn FL )1(45 22 −+= .  Since my theorem considered Fibonacci

numbers that are also nonagonal, if we replace nF  in this identity with the formula for a

nonagonal number, we develop a Diophantine equation that is solved by the results of the

theorem.  Multiplying through by 4 and then replacing variables with x  and y  by

convention yields the two equations I presented earlier.  The solution set of the “+16”

case of the equation is )}1,3(),0,2{( ±±  and the solution set of the “-16” case of the

equation is )}1,1{(± .

This concludes my work on nonagonal numbers in the Fibonacci sequence.  As I

continue my research now and in the future I will look at other orders of polygonal

numbers in the Fibonacci sequence, hopefully taking care of the octagonal case first.  I

would like to study the general case so that given any order of polygonal number I can

say exactly which integers are simultaneously polygonal and Fibonacci, or at least give

an upper bound so that only a finite number of integers must be checked.

I thank you for reading this far.  I want you to know that all my work is simply the

result of a few years of dedication, something that anyone with interest can do.  I hope

my experience will spur you on just as so many have done for me.
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