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1 My involvement in research

The summer after my junior year, I went to the Research Science Institute (RSI)

program at MIT. I had a blast there, and I strongly encourage any eligible

students reading this to apply. I had two mentors: a graduate student named

Dustin Clausen and a professor named Pavel Etingof. My mentors contacted me

before the program to tell me about a potential project on representation theory

in complex rank, following a paper [1] of Deligne that laid the groundwork and

beginning work on a program that Etingof himself had proposed in a talk at

the Newton Institute.

There were a few obstacles. First, Deligne writes in French. It’s a good thing

that I take the language in school, but I’m not terribly fluent. Fortunately,

mathematicians tend not to use difficult words; most of the technical math

jargon consists of cognates anyway. Recognizing “catégorie” as “category” does

not require translator-level skills.

A more serious difficulty was that Deligne’s paper is hard. Academic math

papers in general have a tendency to focus on correctness over understandability
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(the word “trivial” is used very differently by research mathematicians and other

people, for instance). Deligne’s paper also heavily uses the language of category

theory, a branch of mathematics whose dryness has earned it the nickname

“abstract nonsense” among mathematicians. I still don’t understand at least

half of La catégorie des représentations du groupe St lorsque t n’est pas un entier

naturel.

Nevertheless, I did manage to assimilate a few facts about monoidal cat-

egories and get a sense of the basic constructions by the time the program

started in late June 2009. In the meantime, I had also been reading a book

[4] (in French, incidentally) by A. Grothendieck titled Elements de Géometrie

Algébrique . The book is on algebraic geometry, and it was supposed to be a

thirteen-volume treatise covering the main techniques, except only the first four

volumes (which in total are over 1000 pages of reader-unfriendly mathematics in

a small font) were published. I was reading volumes1 0 and 1 to try to get some

understanding of this subject, and as a tool for procrastination—my project

wasn’t supposed to be about it.

Anyway, I met regularly with my mentors during RSI, yet the only bit of real

progress I made then was to think about the fact that a one-variable polynomial

has finitely many roots, unless it is identically zero. This elementary fact was

what I used to try to prove a basic result about some of the objects Etingof had

defined. It turned out that my reasoning was entirely wrong, although I didn’t

know it then.

After RSI, which is when I did almost all of the real work, I was rather con-

fused.2 My mentors said I should try to apply algebraic geometry and suggested

an approach that I was looking into, but after a fair bit of looking during sweaty,
1It is a tradition among mathematicians to refer to prerequisites in sections (or chapters,

or volumes) numbered 0.
2The reason my project has the rather loose title “Deligne categories and representation

theory in complex rank” is that the Siemens deadline required me to submit a title before my
project was ready. I didn’t change it for Intel.
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long walks on August afternoons, it seemed there was a small mistake that ru-

ined everything. So I had to go in a different direction, after which it became

clear to me that what I did during RSI was wrong. It was now August, and

the Siemens competition deadline (September 31st) was looming in two months.

The Siemens competition is near and dear to my mentor’s heart—he told us a

story during RSI about a student three years back who won the competition

with an incredibly advanced project, judged by the nation’s best topologist.

I spent that September with no life—I devoted almost every waking moment

to figuring something out. But in the end, I did. It was probably the messi-

est and most unpleasant paper that I ever will put my name on, but there it

was—squeezed within the maximum 18 pages by a combination of creative font

selection,3 liberal use of footnotes, and repetition of the William Strunk mantra

“Omit needless words!” Basically, I resurrected an idea of an algebro-geometric

parametrization of the objects of interest that had been discarded a while back,

and put it to good use.

After the Siemens competition deadline passed, I went about reading two

papers of Knop (cf. [6] and [5]; readers that are not masochists should probably

start with [6]), that basically took the abstract nonsense in Deligne’s to dizzying

new heights. Nevertheless, the paper was written in an unusually limpid style

that made you feel that the author really wanted to be understood. At least,

it helped clarify what was going on in Deligne, and I enjoyed it. All the same,

I didn’t make any clear progress on actual research, and my paper for the Intel

Science Talent Search (whose deadline is in November) wasn’t terribly different

from the Siemens one, except that I had to list my SAT scores and class rank

and write various essays; it was rather like a college application.

I didn’t work on my project continuously, and I devoted most of the next
3Tip for future science fair-letes: Times New Roman is better than Computer Modern (the

LATEX default).
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few months to learning about a branch of mathematics known as differential ge-

ometry (this includes all sorts of generalizations of classical euclidean geometry

studied in school; it is the mathematics used in general relativity, for instance),

understanding some of its role in the theory of partial differential equations,4 as

well as finishing college applications. In short, I took off for a couple of months.

Then I got the phone call from Elizabeth Marincola in January telling me

that I was a finalist, which put Deligne categories back on my mind. While

preparing for the Intel Science Talent Institute,5 I stumbled into a few extensions

of my previous work. So the work I presented at STS was different (larger) from

the paper I submitted there for selection as a finalist.

2 What I actually did (sort of)

I’m going to say right away that if you want full technical details, you should

read my paper [7], which I have also discussed and explained at my blog (cf. [8],

for instance). The story of my project starts with an algebraic object that shows

up repeatedly, called the symmetric group and denoted Sn, where n here stands

for a positive integer. Sn denotes the collection of ways you can rearrange

a set containing n elements. More formally, an element of Sn is a function

σ : {1, 2, . . . , n} → {1, 2, . . . , n} which is a one-to-one correspondence. The

important algebraic structure on Sn comes from the fact that you can compose

such elements, because you can compose functions. This law of composition

makes Sn into what mathematicians call a group. This is not the place for

too much abstract formalism (or nonsense) here, but a group is basically a

general notion of a set with a law of composition satisfying certain constraints.

For instance, the real numbers R form a group if “composition” is taken as
4A partial differential equation is one that involves partial derivatives: for instance, the

Laplace equation ∂2

∂2x
u + ∂2

∂2y
u = 0 of great importance in mathematical physics.

5This is where the forty finalists present their projects.
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addition.

Groups, however, are very complicated in general. The classification of the

finite simple6 groups7 runs to something like 10,000 pages. That’s why mathe-

maticians like to reduce group theory to linear algebra, that branch of mathe-

matics that studies things like matrices

4 2 −5.5

π 3− 2i 5
√

2

 .
Linear algebra is an introductory undergraduate course, so research mathemati-

cians would call it trivial. Compared to 10,000 page proofs, it is.

So, how does this transformation of group theory into linear algebra work?

Well, the point is that just as groups have a law of composition on them, matrices

have something like composition: matrix multiplication.8 The representation

theory of finite groups is about correspondences between the vastly general,

forbiddingly ivory-tower idea of laws of composition on abstract groups and

the familiar, reassuring voice of our math teacher explaining how to multiply

matrices.

For instance, what is a representation of Sn? It consists of an assignment of

a m-by-m matrix Mσ to each σ in Sn, such that

Mσ ×Mτ = Mσ◦τ

for all σ, τ . I’ve defined something, but we should all be skeptical about

definitions without motivation. I can’t give you an algebraic context for this

here, but I can explain a cool fact. So, let’s recall (or learn) that the trace of a

6“Simple” in mathematical parlance does not mean easy. Its actual meaning is closer to
“like an atom” or “irreducible.”

7This, incidentally, is the source of the hit love song “Finite simple group of order two.”
8Matrices of a fixed square size do not form a group under multiplication, though, because

not all matrices are invertible, and the group axioms require invertibility.
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square matrix is the sum of the entries along the diagonal. Fix a representation

σ →Mσ of Sn. Then it is a theorem that

n! divides
∑
σ∈Sn

|TrMσ|2 .

The two quantities are equal if and only if the representation is simple, which

means basically you can’t split it up into two smaller representations. This is an

elementary fact, which interested readers can learn from the course [3] (which

my mentor gave to high school students9 some years back).

Now I have to explain a revolution in mathematical thinking called category

theory (a.k.a. abstract nonsense) that I mentioned earlier, and despite my

biases, I will attempt to avoid evangelism. A category is basically a bundle

of mathematical objects with relations between them. For instance, there is a

category of groups. There’s a category of representations of Sn. There’s even a

category of categories!10

Why do we study categories? It turns out that many theorems can be proved

for large classes of categories simultaneously, so the use of categories allows for

a significant streamlining of mathematical thought. Then, category theory took

on a life of its own. So we come to the paper of Deligne.

I mentioned that the representations of Sn could be packaged into one math-

ematical object, and this is a category; we call it Rep(Sn). It has quite a rich

structure; the point is that the whole “representation theory of the symmetric

group” mini-area of mathematics is basically the study of the category Rep(Sn),

in some sense. Hold on, though. Rep(Sn) is really a family of categories, one

for each n = 0, 1, 2, . . . , and one for each symmetric group Sn.
9If you have difficulty with them, I sympathize—suffice it to say that it was a bit more

than an honors course, though I didn’t take it.
10Oh, and there are all sorts of set-theoretic traps lying around such meta-ideas; you have

to hop like crazy to avoid being snapped up by Bertrand Russell.
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What Deligne did was to define a category Rep(St) for t not necessarily an

integer, but an arbitrary complex number. Granted, there’s no such thing as a

symmetric group Sπ of permutations of a set with π elements, because nobody

has ever seen a set with π elements. So this category is not the category of

representations of anything. It’s just a category to itself, floating in Platonic

heaven.11

OK, you say. What’s so special about Deligne’s Rep(St)? It’s just a def-

inition, so how do I know this category is not just some trivial object that

you’re dressing up in mathematical symbolism.12 It turns out that, first of all,

as Etingof explains in [2], the categories Rep(St) form an example of “tensor

categories of superexponential growth.” I won’t even begin to explain any of

that, but the point is that their existence shows that some of Deligne’s earlier

work says something that is not only true, but meaningful and interesting.

Moreover, while I can’t explain how the categories Rep(St) are actually con-

structed here, the way they are is not purely random or ad hoc—it looks at the

structure of the ordinary categories of representations of the symmetric groups

Sn, identifies that many of the structures can be described via polynomials in

the integer n, and instead substitutes an arbitrary t into those polynomials.

Etingof explains the process in his talk; David Speyer does so in his blog post;

and I do so in mine. It all boils down, again, to one-variable polynomials in the

rank.

This idea of “interpolation” is not something that Deligne just pulled out of

a hat. Earlier, Feigin had defined an algebra of “matrices of complex size”; this

gives some meaning to the idea of “a π-by-π square matrix.” These, however, are

not categories; some other variants of Deligne’s Rep(St) had been constructed

by Deligne himself earlier because of their properties in the theory of tensor
11To use a phrase of Scott Aaronson.
12As the mathematical analog of Romeo once observed: What’s in a symbol? 3SAT by

another abbreviation would smell as intractable.
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categories.

I’ve already mentioned Etingof’s talk. It’s actually about proposing a pro-

gram of studying “representation theory in complex rank,” when the symmetric

group in Deligne’s paper (and a few other variants) are replaced with a wide

variety of algebraic structures that depend on integral parameters. He showed

that it is possible to define their categories of representations in complex rank.

In other words, what’s been said above, but with the family {Sn} replaced with

something entirely different, for instance this family of objects called the degen-

erate affine Hecke algebras. His definitions build out of the categories defined by

Deligne; basically, the point is that these Hecke algebras (among other things)

are built out of the symmetric group, so their categories of representations (even

when interpolated to complex rank) can be built similarly. Etingof leaves the

viewer of his talk with the quest to study these categories.

My project was to begin working on this program. There are The Big Ques-

tions: namely, what Etingof calls “degeneracy phenomena.” To use his colorful

language, where do these new universes (representation theory in complex rank)

that Etingof has discovered differ from our own, smaller, solar system (repre-

sentation theory in integral rank) that we have already studied? Ultimately,

the rather limited mathematical equipment I had aboard my spaceship (given

my then being a high school student) was insufficient13 for proper exploration

into these dense corners. The project was, for the most part, well over my head,

and I wasn’t able to make serious progress on said phenomena. That is left for

future, better-fueled voyagers.

I showed that these new universes are similar to our own solar system, and

not even all that unfamiliar from Earth at home, if you make the rank a tran-

scendental number.
13Perhaps Erika DeBenedictis, the winner of the 2010 STS competition, would disagree; cf.

her project.
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So, how did I do this? I parametrized these families of categories by certain

schemes. I can’t explain what a scheme is properly, but the point is that (as I

show) the properties of these families of categories depend on the vanishing (or

nonvanishing) of certain rational-coefficient polynomials at the rank t. I have

no idea at all what these polynomials are, except that they exist.

And if such a polynomial with rational coefficients has no roots in the in-

tegers, it is nonzero and has no roots among transcendental numbers. Hence,

representation theory in transcendental rank is similar to representation theory

in integral rank (i.e., classical representation theory)—because a polynomial

that vanishes on the nonzero integers can’t vanish on the transcendentals.

Stripping away all the formalism and technical stuff, that’s essentially what

I did. I used more generality in the statements (that’s how the scheme-theoretic

business comes in); it creates a framework of “categories depending on a pa-

rameter” that may be usable in future investigation.
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