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Personal Statement

I am fascinated by problems that require a blend of computational topology, geometry, and number
theory. I have also been studying fractals which interesting geometrical objects that have been used
in diverse applications such as cryptography, seismology, network optimization, and even weather
forecasting. However, despite the wide range of applications and interest in fractals, the general
theory of these objects is still in its infancy. My work on this research project has developed some
theorems and conjectures in the field of combinatorics and has begun to shed some light on some
areas of fractals, one-cell automata and dynamical systems.

Historically, combinatorics has had a broad range of impact and influence on many fields in math
including algebra, graph theory, probability and topology. In the last sixty years, due to the efforts
of visionaries such as Rota, Stanley, and others, the field has made such significant strides in theory
that it has been elevated to an independent branch of mathematics. Combinatoric optimization
focuses on determining an optimal solution from among a vast set of solutions in ways that are far
more efficient than just doing an exhaustive search.

This need for optimization has become increasingly more important in today’s society from
the perspective of both resource management as well as leveraging new opportunities. In terms of
resource allocation, combinatoric optimization is being used to improve the efficiency of scheduling
transportation (the traveling salesperson problem) to allocating scarce resources (such as military
equipment or food distribution), through improving internet network traffic throughput, latency,
and infrastructure costs. But the field has broader impact than just efficient resource allocation as
it can more help in more efficiently processing large amounts of data. Increasingly, we are producing
more information that we can efficiently sort through and understand, whether it is the 100k plus

tweets per minute of the Presidential debates, the information gathered about global warming, or



the data mining of consumer information.

I started my research during the summer of 2012 at the Research Science Institute (RSI) at
MIT. I was given the challenge of solving some open problems in the field of combinatorics that
were applicable to a certain class of fractals. In order to prepare for the research, before attending
RSI T self-studied some additional math such as abstract algebra and representation theory using
online lectures from MIT and coaching from my RSI mentor. In addition, I had to research and
understand the previous works in the field. During my time at RSI, I worked full time on the
research and at the conclusion of RSI I continued the research for the following four months under
the continued support of my research advisor, Professor Pavel Etingof.

My advice to students who want to undertake a project that combines science and mathematics
is first and foremost to be really interested and curious about a particular problem. During the
project you will likely have set backs and stumbling blocks and having that strong interest is what
will help you get past any problems. Second, the way to find a project that captures your interest
is to be really expansive in exploring different areas and following the paths and ideas of previous
work and notice which things you wind up thinking about in your free time. Math and science
are so inextricably linked that one can start almost anywhere, from a theoretical math problem to
an applied problem in science, and wind up taking an interesting and exciting path through both
disciplines. Along the way you can either build on previous work that interests you or formulate
your own problem. Lastly, take advantage of the fact that there are so many people who are willing
to help an enthusiastic researcher. Reach out to people for advice, feedback, and coaching and
spend time helping others. You never know which collaboration will contribute to the success of

your project.



PATTERNS IN THE COEFFICIENTS OF POWERS OF POLYNOMIALS OVER
A FINITE FIELD

KEVIN GARBE

ABSTRACT. We examine the behavior of the coefficients of powers of polynomials
over a finite field of prime order. Extending the work of Allouche-Berthe, 1997, we study
a(n), the number of occurring strings of length n among coefficients of any power of
a polynomial f reduced modulo a prime p. The sequence of line complexity a(n) is p-
regular in the sense of Allouche-Shalit. For f = 1+ z and general p, we derive a recursion
relation for a(n) then find a new formula for the generating function for a(n). We use
the generating function to compute the asymptotics of a(n)/n? as n — oo, which is an
explicitly computable piecewise quadratic in  with n = [p™ /2] and « is a real number
between 1/p and 1. Analyzing other cases, we form a conjecture about the generating
function for general a(n). We examine the matrix B associated with f and p used to
compute the count of a coefficient, which applies to the theory of linear cellular automata
and fractals. For p = 2 and polynomials of small degree we compute the largest positive
eigenvalue, A\, of B, related to the fractal dimension d of the corresponding fractal by
d = log,(A). We find proofs and make a number of conjectures for some bounds on A and

upper bounds on its degree.

1 Introduction

It was shown by S. Wolfram and others in 1980s that 1-dimensional linear cellular automata lead
at large scale to interesting examples of fractals. A basic example is the automaton associated to a
polynomial f over Z/p, whose transition matrix T’ is the matrix of multiplication by f(x) on the
space of Laurent polynomials in z. If f =1 + z, then starting with the initial state go(z) = 1, one
recovers Pascal’s triangle mod p. For p = 2, at large scale, it produces the Sierpinski triangle shown
in Figure 1. Similarly, the case of f = 1 4+ x + 22, p = 2, and initial state go(x) = 1 produces the

fractal shown in Figure 2.



The double sequences produced by such automata, i.e., the sequences encoding the coeflicients
of the powers of f, have a very interesting structure. Namely, if p is a prime, they are p-automatic
sequences in the sense of [3]. In the case f = 1+, this follows from Lucas’ theorem that (};) =[] (}')
mod p, where n;, k; are the p-ary digits of n, k. l

In [6, 7], S. Wilson studied this example in the case where f is any polynomial, and computed the
fractal dimension of the corresponding fractal. The answer is § = logp()\), where p < X < p? is the
largest (Perron-Frobenius) eigenvalue of a certain integer matrix B associated to f (in particular,
an algebraic integer). In terms of coefficients of powers of f, this number characterizes the rate of
growth of the total number of nonzero coefficients in f? for 0 < i < p™: this number behaves like
n?. The number of nonzero coefficients of each kind can actually be computed exactly at every step
of the recursion, by using a matrix method similar to Wilson’s; this is explained in the paper [3].

In this paper, we compute the eigenvalues A and their degrees for p = 2 for Laurent polynomials
f of small degrees, observe some patterns, and make a number of conjectures (in particular, that
A can be arbitrarily close to 4) in Section 3.3. We also prove an upper bound for A depending on
the degree of f.

The size of the matrix B (which is an upper bound for the degree of \) is the number of accessible
blocks (i.e., strings that occur in the sequence of coefficients of f? for some 4) of length deg(f) (for
p = 2). This raises the question of finding the number a(n) of accessible blocks of any length n. The
number a(n) characterizes the so-called line complexity of the corresponding linear automaton, and
is studied in the paper [1]. It is shown in [1],[5], and references therein that C1n? < a(n) < Cyn?,

and that for p = 2 and f = 1+ x, one has a(n) = n?

—n+ 2. More generally, however, the sequence
a(n) does not have such a simple form, even for f = 1 + x and p > 2. The paper [1] derives a
recursion for this sequence, and we derive another one in Section 2.2.1, which is equivalent. These
recursions show that the sequence a(n) is p-regular in the sense of [2] (the notion of p-regularity is
a generalization of the notion of p-automaticity, to the case of integer, rather than mod p, values).
We then proceed to find a new formula for the generating function for a(n) in Section 2.3, and use

it to compute the asymptotics of a(n)/n? as n — oo in Section 2.4. It turns out that if n = [p™/z],

where z is a real number between 1/p and 1, then f(n)/n? tends to an explicit function of x, which



is piecewise quadratic (a gluing together of 3 quadratic functions, which we explicitly compute). In
Section 2.4 we also compute the maximum and minimum value of this function, which gives the
best asymptotic values for C7 and Cs. This gives us new precise results about the complexity of
the Pascal triangle mod p. We also perform a similar analysis for f = 1+ 4+ 22 and p = 2, and

make a conjecture about the general case.

Figure 1: Fractal corresponding to 1 4+ 2 modulo 2 (Sierpinski’s Triangle)

Figure 2: Fractal corresponding to 1 4+ x + 2? modulo 2



2 Accessible Blocks

2.1 Definitions

A block is a string of mod p digits. An m-block is a block with m digits. For example, the four
2-blocks modulo 2 are 00,01,11, and 11.

For a polynomial f(x) with integer coefficients reduced modulo p, an accessible m-block is an
m-block that appears anywhere among the coefficients, ordered by powers of x, of powers of f(z)
modulo p. The number of accessible 0-blocks we define to be 1. Furthermore, we define row k for
some f(x) and p to be the coefficients of f(z)* reduced modulo p and define af(z),p(m) to be the

number of accessible m-blocks for the polynomial f(z) and prime p.

Example 2.1. For f(x) =1+ x and p = 2, the 4-blocks 1101 and 1011 are never a substring of
any power of 1 + x reduced modulo 2. Every other 4-block appears in some power of 1 + x reduced
modulo 2, so aj4,2(4) = 14.

2.2 Recursion Relations for a(n)

We start with the well known fact in Lemma 2.2.
Lemma 2.2. f(z)*? = f(2P)* (mod p).
Applying Lemma 2.2 to the accessible blocks, we have Corollary 2.3.

Corollary 2.3. For any integer k, prime p, and polynomial f(x), every row k -p for f(x) mod
p is of the form b10...0020...... 0b,_10...0b, where the entries b; are the coefficients of f(x)*,
and where each string of zeros between two entries b; and b1 is of length p — 1. Therefore, every

accessible block from a row divisible by p is a subsection of b10...0b20...... 0b,-10...0b,.

2.2.1 Accessible m-Blocks for f(z) =1+ z and General Prime p

The number of accessible m-blocks for f(z) = 1+ x and any prime p, 144 p, is defined by the

recurrence relation in Theorem 2.4.



Theorem 2.4. For f(z) =1+ x and any prime p > 3, for 0 < k < p — 1, the recursion relation
with starting points a14.,(0) = 1,a144,(1) = p, and a14,,(2) = p? is

k) (p—k+1 2
PZREZEAD o) + (bt k424 7

k? —k
2

a1+x,p(p n+k)= p) : al—l—m,p(n +1)

+ “iyzp(n+2)—(2p—1)(2p—2).

Proof. From Corollary 2.3, every accessible block in a row r with 7 = 0 (mod p) is formed by
adding p — 1 zeros between every digit of an accessible block, then adding some number of zeros
(possibly none) less than p to either side. Furthermore, because f(z) = 1+ x, the coefficient of z’ in
a row is the sum modulo p of the coefficients of 2% and z*~! in the previous row. Because accessible
blocks are subsections of a row, any accessible m-block comes from an accessible (m + 1)-block.
Table 1 provides the general forms of the (p - n + k)-blocks for each row modulo p. To count the
multiple additions of b in the forms, we define g; = (¥ ;1)

The number of accessible blocks that lead into each form in Table 1 are the triangular numbers
counting downwards for ajy, ,(n), the triangular numbers counting upward for ajy,2(n + 2), and
because the total number of forms is p?, we find a144,(n + 1) through subtraction. Namely, the
factor of aiysp(n) starts at p for row congruent to 0 modulo p and k=0, and decreases as k and
row increase, and the coefficient of a14, p(n + 2) starts at 0 for row congruent to 0 and 1 modulo
p and increases with k£ and row. An additional (2p — 1)(2p — 2) must be subtracted to account for

blocks that satisfy multiple forms. Therefore

—k)(p—k+1 2 —
a14a,p(p 1+ k) :(p )(pQ ) “artzp(n) + (kp+k — K + £ 2 p) a1tz p(n+1)
K2 —k
P a2~ 2p - D20 2).

O]

This is equivalent to Theorem 5.10 of Allouche-Berthe [1], reproduced below in Theorem 2.5.



Blocks for k =
Row
mod 0 1 2 e p—1
p
b1000...00b500...... 000,00 ...000 brnt1 0 . 0
06100...000b50...... 000b,,0 ...000 0 brnt1 e 0
0 00b610...0000bs. .. ... 0000b,, ...000 0 0 . 0
0000 ...510000...... b,,—10000. . .0b,,0 0 0 bn+1
0000...0b1000...... 0b,,—1000. . .00b,, 0 0 0
01000 . ..0b9b500...... 0b,0,00 ...00b,41 brnt1 0 . 0
b16100. . .00bobs0. .. .. . 006,650 ... 000 b1 boit | - 0
) 061610...000b9bs. . . ... 000b,b,, ... 000 0 b1 0
0000 ...b10000...... b,—10000 ... b,0 0 0 . b1
0000 ...b1b1000...... bp—16,—-1000... b,b, 0 0 cee bnt1
biba(g2b2) ..., (94bn41)(930n+1)(920n+1) | bns1 boi2 | - | (93bnt2)
(g2b1)biby ... (956n+1)(9abn+1)(93bn+1) | (92bn+1) brt1 | (gabny2)
p—1 (93b1)(g2b1)b1 ... (96bn+1)(950n+1)(94bn+1) | (93bn+1) | (92bnt1) | -+ | (95bn+2)
(9201)(g3b1)(gab1). ... .. (92bn)brbry1 (92bn+1) | (93bn+1) | =+~ bnt1
b1(g2b1)(gsb1) -..... (930n) (g2bn) by b1 | (92bnt1) | -+ | (92bn1)

Table 1: Forms of blocks for the general case 1 + x with any prime p

Theorem 2.5. For 0 <k <p—1andn >0 such that pn+k > 3

aitz2(pn+k+1) —ar4z2(pn + k) =(p — k) (a1+x72(n +1) - a1+x72(n))

+ k(alJr:):,Z(n +2) — a14z2(n + 1))

. . . 3 2
with starting points a1442(0) = 1, a14422(1) = p, a14122(2) = p?, and a14,2(3) = %-

2.2.2 Accessible m-Blocks for ¢ + = + 22 and prime p

Table 2 provides a, ;4,2 ,(n) for small n and p.
Using a method similar to the one we used for Theorem 2.4, the recursion relations appear to

be those shown in Table 3.




Prime

a(n)

2 4 8 4 25 36

53 70 92 114

39 25 43 71 109

157 207 259 313

3 9 25 61 105 165

233 321 417 533

25 121 393 673 929

1257 1761 2341 3097

ot

25 125 393 689 953

1293 1801 2389 3145

5 25 117 385 657 905

1221 1713 2277 3017

5 25 101 169 253 353

509 721 989 1313

| O O O O W W

R WIN RN~
ot

7 49 331

1285 2137 2881

3859

Table 2: a(n) for ¢+ x

+ 22

Recursion

k initial

2a(n)+2a(n+1)
a(n )—1—2a n+1)+a(n+2)

8 1,2,4,8,14,25

(n+1)
6a(n)+3a(n+1)
3a(n)+6a(n+1)
a(n)+7a(n+1)+a(n+2)

20 1,3,9,25

4a(n)+4a(n+1)+a(n+2)
2a(n)+5a(n+1)+2a(n+2)
a(n)+4a(n+1)+4a(n+2)

32 | 1,3,9,25,61,105

9a(n)+12a(n+1)+4a(n+2

6a(n)+13a(n+1)+6a(n+2
4a(n)+12a(n+1)+9a(n+2

2a(n)+10a(n+1)+12a(n+2)+a(n+3)

a(n)+12a(n+1)+10a(n+2)+2a(n+3)

152 | 1,5,25,121,393,673

9a(n)+12a(n+1)+4a(n+2
6a(n)+13a(n+1)+6a(n+2

2a(n)+10a(n+1)+12a(n+2)+a(n+3)
a(n)+12a(n+1)+10a(n+2)+2a(n+3)

152 | 1,5,25,125,393,689

9a(n)+12a(n+1)+4a(n+2

6a(n)+13a(n+1)+6a(n+2

4a(n)+12a(n+1)+9a(n+2
2a(n)+10a(n+1)+12a(n+2)+a(n+3)

)
)
)
(
(
|
4a(n)+12a(n+1)+9a(n+2)
(
(
)
)
?
a(n)+12a(n+1)+10a(n+2)+2a(n+3)

152 | 1,5,25,117,385,657

15a(n)+10a(n+1)

10a(n)+15a(n+1)
6a(n)+18a(n+1)+a(n+2)
3a(n)+19a(n+1)+3a(n+2)
a(n)+18a(n+1)+6a(n+2)

72 | 1,5,25,101,169

Table 3: Recursions for ¢ + z + 2




We see that for p > 2, a2 ,(n) = a142(n) if ¢ = § (mod p) because c+z+2? = (1+z/2)2.

Furthermore, we arrive at Conjecture 2.6.

Conjecture 2.6. For c # i (mod 5), the recursion for ajy,. .2 ,(n) is independent of c. Only the

initial terms of the recursion depend on c.

2.3 Closed form for a(n)
Theorem 2.7. a1, 2(m) =m? —m + 2.

Proof. Theorem 2.4 provides the recursion relation of a1442(2n) = 3a144,2(n) + a1422(n+1) — 6
and a144,2(n) = a142,2(n) + 3a1422(n + 1). We can find the starting points of a1442(1) = 2 and
a142,2(2) = 4 through inspection. This uniquely defines the sequence of accessible m-blocks. It is

2

easy to show that the equation aj4,(m) = m® — m + 2 satisfies both recursion relations through

substitution, and also satisfies a144,2(1) = 2 and a1442(2) = 4. O

This matches Remark 5.14 of [1].

2.3.1 Generating Functions for a(n)

Using recursion relations, we can find the generating functions gy, for p > 3.

Theorem 2.8.

oo
Gitap(z) = Z A14z,p(n)2"
n=0

:(1_12)3(1 +(p—3)z+ (p* —3p+3)2°

+ z2(p_21)2 > (pzpi —2(p—1)2%* + (p— 2)z3pi)>.
>0

Proof. We have from Theorem 2.4 that for starting points a(0) = 1, a(1) = p, and a(2) = p? the

10



recursion relation is defined for pn + k£ > 2 as

(p—k)p—k+1)

2 a

k2 —k
2

a(pn + k) = (n) + (kp + k — k? +p22_p)a(n+ 1)

_l’_

an+2)—2p—1)(2p —2).

Adjusting for the k = 0,1 cases by replacing k with n + 2 gives

p—k-2)p—k-1)
2
+(k+1)2(k—|—2)

2
3
alpn +k+2) = (n)+(k:p—3k:—k:2—2+p+Tp)a(n+1)

an+2)—2p—1)(2p —2).

To adjust for the case when p, k = 0, we define the recursion relation to have an additional term
of %a(m + %a(l) — (2p — 1)(2p — 2) subtracted from the right hand side for only
the case of p, k = 0.

We multiply through by z”"** then sum over k = 0 to p— 1, then n = 0 to co. We also subtract

from the right hand side of the sum the above mentioned additional term to account for the case

of p,k = 0. Defining h(z) = > a(n+ 2)2", we get
n>0

h(z) =(1+2z+2%+...+2271)h(P) + =2 (p32(1 —2)2 4+ 2p%(1 — 2)(4 — 5z + 227)

+2(2 324322 — 23— 2P) — p(12 — 192 + 162> — 52 — 62P + 2z2p)>

(2p —1)(2p —2)

1—-=2
— P)3
Therefore h(z) = Hh(zp) +Q(z)—(2p—1)(2p — 2)% where
Q) :2(11_Z)3 <p3,z(l C )2 4 2p2(1 — 2)(4— B2+ 227) 4+ 22 — 32 4 327 — 2B — 2P)

—p(12 — 192 4 1622 — 52% — 627 + 2z2p)).

We then define u(z) = (1—2)3h(2) and R(z) = Q(2)(1—2)%— (2p—1)(2p—2)(1—2)2. Tteratively

11



substituting gives u(z) = u(z*")+ ¥ R(=) = a(2)+ ¥ R("), or h(z) = e (a(2)+ ¥ R(=")).

i>0 i>0 i>0

Note that

i 1
ZR(zp ) :Z 2((11)3 —2p* —5p+2)z—2(p® — 3p* +2p—1)22

i>0 i>0

+@—axp—n%&+%@—mnﬂ—mﬁﬂ

— 1) i ’ :
=— ((3p —1)z —sz) + (]92) Z (pzp —2(p—1)2%" + (p —2)2* )
i>0
Therefore
9(2) =a(0) + a(1)z + 22h(2)
P+ ¥ RE)
_ 2 120
=1l+pz+=z —(1_2)3
14+ (p—3)z+ (p* —3p+3)2* + 22@ > (pzpi —2(p—1)2% + (p— 2)z3pi)
i>0
= -2

O]

Example 2.9. Setting p = 3 in Theorem 2.8 and noting that the Pd further reduces when p = 3

provides

]. > 7 7
G112,3(2) = e (1 4322 — 223 + 822 Z:(z3 — 223 ))
i=0

Example 2.10. Setting p =5 in Theorem 2.8 provides

1 o i i
Gitz2,5(2) = (1= 2) (1 + 22 + 1322 + 822 2(525 _ 8,25 4 3,35 ))
i=0

We can use a similar proof to find further generating functions g,),(z) from the recursion

relations for a s, ,(n).

Theorem 2.11. -
142234225 — 264 3 (22 — 23%)
_ =0
gl+m+x2,2(’z) - (1 — 22)(1 — 2)2

12



Based on the recursions in Table 3 and the method provided in Theorem 2.8, we arrive at

Conjecture 2.12, which is confirmed for p = 3, 5.

Conjecture 2.12. Forc # % (mod p), the functional equation for the generating function g. .2 ,(2)

18
P k
dereistal®) = S g n) — QL) -

1—2’

where 7(z) = (1 — 22)(1 — 2)? and Q(z) is some polynomial.

Conjecture 2.13. For any f(x) and p, the generating function gf(x)’p(z) satisfies the equation
7(2)9f(2)p(2) = 7(2P) g1 (@) p(2P) + b(2) for some polynomials r(z) and b(z) depending on f(x) and

p.

2.4 Limits of M
n2

Using the generating functions, we can find the asymptotic behavior of a(n) as n goes to infinity.
a(n)

Inspired by the quadratic nature of Theorem 2.7, we examine the behavior of =5

Theorem 2.14. For f(x) =1+ x and any prime p > 3,

p2(p—5)(p—1)( p+1 >2+(p—1)(p2—7p+4) Logcl
2(p+1) p(p —5) 2(p — 5) pon T
—(p—1)(7p* — 8p* — 9p +18) ( C(p+1)BP* —Tp+ 6)>2
4p+1) Tp3 — 8p? — 9p + 18
_ 5 4 _ g3 1r. 2 _
i a1+z,§(n) _ ) (=)@ +5p —8p® — 15> + 39p — 18) Log<l
nooo 2(7p — 8p? — 9p + 18)
(P=2)p-)@P*+2p+ 5)( _ (p+1y )2
4(p+1) pP?+2p+5
_ 3 2 _
e 1)(p2+4p +3p—4) Lop<l
2(p? +2p+5)
pk
where n = L;J and the limit as n — oo is with constant x and k — co.
Remark 2.15. The first polynomial from Theorem 2.14 corresponding to % <z < % should be

understood in the sense of the limit for p =5 as we divide by (p — 5). In this case the polynomial

s not quadratic but actually the linear polynomial 20x + 8.

13



Proof. Theorem 2.8 states that

9(2) =) a14ap(n)2"

n>0

:(1_12)3<1 +(p—3)z+ (p* —3p+3)22

+ 22 (b _21)2 Z <pzpi —2(p— 1)22pi +(p— 2)z3pi>).
i>0

2
Let E b(n)z = m E (pr — 2(p — 1)Z2p + (p - 2)23p )
n>0 >0

Therefore, with the limit of n = L%J — o0 taken with fixed x and k — oo, we have

Za(n)zn :1 + (p_ 3)Z +_(p23_ 3p—i—3)2’2 + Z (p_ 1)2b(n)zn

n>0 (1-2) S0 2

i ot = iy (5 Sy D)
aln —1)2 —1)2 . bn

PONCE ) S )

Therefore, because they act similarly, we can find the asymptotics of % by understanding the
b(n)

behavior =5*. We can rewrite »- b(n)z" as
n>0

Y (SRl P S UL U LR
i=0 '

From this we see that

p'<n — i) — i — 2p'<n n— 298 (n — 2p¢ —
b(n):pz<(n p)(n—p 1))_2(p_1)z<( 2p')(n — 2p 1))

=0 =0 2

3p'<n i i
fo-2) ((n—2p)(n—2p —1)>.

14



Therefore

k
Let n = |E-|. We can neglect the 1 in the second factor (it creates a change that goes to zero as

k — c0), so we get
T B
O SR S DY Ly S tE o
2 = , n 2 4 n

Note that if z ¢ [%,1] then there is m € Z such that p™z € [%, 1], so we can assume % <z <1

Ignoring the floor for simplicity, we set n = %. Therefore we get

k . k k
W) plew . R o
=5 2 1=t =(p=1) 3 (1-2" )’ Z (1—3p""a)”.
(%) i=0 i=0 =0

When examining the upper limits of the three sums, we find that we therefore have 3 cases:

< z < 1. For the first sum, pi<igivesigk—i—lforx:%,andigk

1 1
<z 23

IN

<z

B =
wh—t
ol
I/\

forx—3,2,1 For the second sum, pz<p g1vesz<kfor:n—% % %andigk—lfor:rzl.For
for

the third sum, p* < gwes i <k for x = %,% and i1 < k—1 %, 1. Note that the limit is
taken along the subsequences of the form L%J with fixed z and k — oco. Also note that the limiting

function does not change if x is replaced by p - z.
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k
b)) po i _ p r .
=2 (=P = (= 1) Y (=2 + ==y (13’
(%) i=0 i=0 i=0
- -
p?k 2 P
=(p — 2
(p 5)p2_1x+p_1x
2 1 1
b(n) _ P —F
nlggoT _kh~>nolo ((p—5) p?—1 . +2p—1 *
i A1) _P(p =5 —1) (v p+1 )2 (p—1)(p*—Tp+4)
n—oo 2(p+1) p(p —5) 2(p—5)
For the case of % <z< % we similarly find that because
HE) p k2 . ko2 P25 k2
(p;f)z =52 (=P = (=1} (=22 + =3 (1 -3 ),
e i=0 i=0 i=0

the limit of

a(n) _—(p—1)(7p° —8p* —9p + 18)( B (p+1)(3p2—7p+6)>2_ (r—4)(p-1)°

li -
300 12 A(p+1) 5 — 8p2 — Op + 18 4

(p+D(p - DBp* — T +6)*

+ 4(Tp? — 8p? — 9p + 18)

Similarly for the case of % <z <1 we find that because

b(i) pk - k—1 ko p_2k—1 ko
v 52(1 —pFz)? —(p—1) > (1 —2p"Fa)* + e > (1 =3p"Fa)?,
(%) i=0 i=0 i=0
one has
i 40 _ (p—2)(p—1)(p2+2p+5)< (1) )2 (p—1)(p* +4p* +3p — 4)
n—oo n? 4(p+1) P> +2p+5 2(p* +2p+5)
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Corollary 2.16. For the polynomial 1 + x and p > 3,

— (3 +4p> +3p—4
g Gee(®) _ (0= D(p° +4p” + 3p — 4)
n—00 n? 2(p> +2p+5)

— 1)(p® + 5p* — 8p> — 15p 4 39p — 18
lhnsup(h+x§Uw _ (=D +5p P’ 19" + 3% )
n—00 n 2(7p3 — 8p? — 9p + 18)

3p —4p?> —p+6

% — 8p2 — Op + 18 and the minimum is when

Proof. The maximum of Theorem 2.14 is when =z =

CpP42p+1

== . O
pe+2p+5

We can also apply this to other ay () ,(n).

Theorem 2.17. For polynomial 1 + = + 2% and prime 2,

?4_11«_3332 Ly <?2
, Algataz2(n) 4 2 12 2o
n oo n2 -
§—1x+lx2 2<zr<1
2 47 48 3=
(n) 7

Furthermore, the upper and lower limits of al*“#ﬂ are 5 and o respectively.

The proof of Theorem 2.17 is similar to the proof of Theorem 2.14.
Using the recursion relations, we computed the upper and lower limits of af%;’(n) for sufficiently
large n for several f(x) and p, The oscillatory nature of this sequence for large n stabilizing to a

periodic function in log(x) is illustrated by Figure 3.

A UA YA

1
13
/‘J
i

55 60 65 70 75 80 4.0 45 50 55

(a) 1+ 2 (mod 3) (b) 1+ (mod 5) (c) 1 +x+2* (mod 2)
Figure 3: M with the z axis showing log,m

m2
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This matches a prior result expressed in Lemma 5.15 by [1], which states that for large n, there
exists constants c¢; and co such that c1n? < a(n) < can?. The limits given by Corollary 2.16 provide

sharp values of ¢; and ¢o. !

3 Counting Coefficients

3.1 Definitions

For a polynomial f(z), prime p, and positive integer a < p — 1, we define qs(,) ,(k, @) to be the
number of occurrences of a among the coefficients of f(z)* reduced modulo p. Similarly, we define
4f(z)p(k) to be the total number of nonzero coefficients of f(x)*. We then define T f(a)p(M Q) =
jg Qf(2)p(is ) and 750 H(n) = jg qf(x)p(i). We search for a quick method for calculating both

4f(z)p(k, @) and the asymptotic behavior of 7, ,(n, a) for large n.

3.2 Willson Method

Willson [6] describes an algorithm for computing the value of 7,y 2(n), which is provided in

Theorem 3.1.

Theorem 3.1 (Willson’s Method). For some polynomial f(x) with mazimum degree d, there exists

a matriz B, row vector u, and column vector v each of size 2% — 1 such that u- B -v = rf(x)72(2k).

Amdeberhan-Stanley [4] describes a similar and related algorithm for calculating the number of
each coefficient « for any power k for general f(x) and p, namely gy, ,(k, ). Willson also analyzed

the case of p > 2 in [7].

2 0 2
Example 3.2. For 1+x+2% mod 2, B = [1 1 21 . Note that the largest eigenvalue of this matriz

1 10
is 14+ /5.

Theorem 3.3. The matrixz B is the sum of four matrices, each of which corresponds to a self-

mapping of the set X = Fyz]/x?\ 0.

!Strictly speaking, fore these sharp values, we may not have cin® < a(n) < con?, but for any 6 > 0 we have
(c1 —&)n? < a(n) < (cz2 + 8)n? for large enough n.
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Theorem 3.3 follows easily from Willson [6].

Remark 3.4. The size of the matrix B can be made smaller only by using accessible blocks, as

explained in Wilson [6].

3.3 Eigenvalue Analysis

The matrix B has nonnegative entries and is irreducible. Following Willson [6], define A to be
the Perron-Frobenius eigenvalue of B, i.e., the largest positive eigenvalue of B (it exists by the
Perron-Frobenius theorem). We define A(f) to be the value of A for the polynomial f(x). We can
approximate the value of r f(m)m(pk , ) with A* because the entries of B¥ grow as a constant times
AE,

Example 3.5. For f(x) =1+ x and p = 2, X\ = 3 because B = [3]. In this case \ corresponds
exactly to the scaling of the mumber of nonzero coefficients when doubling the number of rows,

namely m1442(2k) =3 - riyz2(k).

When examining the eigenvalues, we note that there are multiple transformations of a polyno-

mial that does not change .

Theorem 3.6. We define the polynomials f(x) and g(x) to be similar if we can transform f(x)
into g(x) through a combination of the transformations f(cx) and cf(x) with integer 1 < ¢ < p,
z°f(x) with integer ¢ > 0, f(x°) with integer ¢ > 1, x%9U) f(x=1), and f(x)® with integer ¢ > 1.

Any two similar polynomials have the same X.

Proof. Because the transformations f(c- x), f(x),z¢ - f(x),c- f(x), and flipping a polynomial do
not change the number of nonzero coefficients of a polynomial, A do not change. Furthermore,
because f(x)¢ is every ¢! row, the ratios over the long term of the sums of total number of nonzero
coefficients does not change, so A is the same. Namely, let gf(,)(n) be the number of nonzero
coefficients of f(z)". Therefore gy)(n + 1) < C - gp)(n), where C' is the number of nonzero

coefficients of f(z). This means that

k-n—1 n—1
rimon) = Y qpa() <DL+ C+. .+ CF Ny k) <A+ C+ ...+ C" Drpn(n).
j=0 j=0
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Polynomial A d Polynomial A d
1+2 3 1 14+x+2° 3.45686 20
142422 3.23607 2 1+z4+22+25 3.49009 20

1+ 2z + a3 3.31142 4 1+z+ a3+ 25 3.50478 10
1424 z* 3.33159 5 1422+ 23 + 25 3.53521 20
14z +a22+24 3.3788 7 14+ z+22+ 2%+ 28 3.53141 19
14+x+ 23422 3.47662 4 14z +at 428 3.50468 17
1+z+22+2% +24 3.45729 4 1+az+4+22+2*+25 3.55002 19
14+ x+a° 3.35174 10 14+ x+a3 42+ 28 3.59415 16

1+ 22+ 2P 3.46127 12 1+ 22+ 23+t + 26 3.53665 15
l+z+22+2° 3.49563 7 1+z+22+ 234+ 2% + 25 3.59043 11
l+z+23+2° 3.45469 12 1+z+42°+25 3.54536 14
1+ 22423 +2° 3.46639 5 14+x+224+2°+a8 3.50809 18
l+z4a?+23+2° 3.5229 14 l+z+a2+ 23+ 25+ 25 3.57066 17
l+z4a? 42t +2° 3.47168 11 1+z+22+a* +2° + 25 3.49995 6
l4+x+224+22+24 425 352951 6 |1+ +22+28+24+2°+ 2%  3.5598 6

Table 4: X and the degree of its minimal polynomial for p = 2 and deg(f(x)) <6

This implies that A(f) < A(f*). Similarly since Qp)(J -k —1) > C‘iqf(z) (j - k), we can show that
A(fF) < A(f). Therefore A(f) = A(f¥). O

3.3.1 Values of A where p =2

We calculate A for polynomials with p = 2. We also find the minimal polynomial of A. Provided
are A and the degree d of its minimal polynomial for non-similar polynomials with degree of up to
6, although we had calculated for deg(f) < 9.

We see that A is between 3 and 4. We form several conjectures on the bounds of .

Conjecture 3.7. When p =2, A > 3. Furthermore, A = 3 only for polynomials similar to 14+ x. If
p=2and \ >3, then A\ > 1+ /5. Furthermore, A\ = 1 + /5 only if f(x) is similar to 1 + x + 22

Question 3.8. Is it true that A\(f) = A(g) if and only if f(x) and g(x) are similar in terms of the

transformations described in Theorem 3.67

Theorem 3.9. For some polynomial f(x) with degree at most 28 and p = 2,

1

A(f) < 4(1 = Fs) 7.
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Proof. Define k such that the degree of f(x) is at most 2¥, with p = 2. From Theorem 3.3, we can
draw an oriented graph whose vertices are elements of X and whose edges correspond to the four
maps. Therefore there are exactly four edges coming out of each vertex. Therefore if Q(n) is the

log Q(n)

number of paths in the graph of length n, we have log A\ = limsup ————=. From the definition
n—00 n

of Willson’s method, Theorem 3.1, two of the four mappings correspond to g(z) — g¢(2?) and
g(x) = - g(x?). Assume deg(f(z)) = 2¥. Then a path starting from any g(z) and moving first to
x - g(2?) then alternating in any way between the two mappings leads to 0 after k + 1 steps. So the
number of such paths of length k + 1 is 2¥. So the number of paths of length k + 1 from any point
that avoids 0 is at most 41 — 2%, Thus the number of such paths of length n - (k 4 1) is at most

(4F+1 — 2k This gives us the bound of X\ < 4(1 — L)k%l O
. —= 2k+2 .

For k = 0, the only polynomial is 1 + z, so the bound A < 4(1 — i)l = 3 is sharp. However, for
k = 1 the bound tells us that A < v/14 which is not sharp. Furthermore, this bound approaches 4
as k approaches oo.
Conjecture 3.10. Let Ay be the mazimal \(f) for deg f < k. Then limy_oo\, = 4.
Remark 3.11. Similarly for p > 2, one may conjecture that limy_,oo Ay = p>.

Through computer analysis of A for p = 2 and deg ( f (ac)) <9, Conjecture 3.12 arises.

Conjecture 3.12. The degree of the minimal polynomial of X is less than or equal to 2¢¢9()=1 for
p=2.
4 Conclusion and Directions of Future Research

Natural goals for further study of the phenomena examined in this paper include the following:

e Obtain recursion relations, generating functions, and limiting functions as in Section 2 for

af(z)p(n) in the case deg(f(x)) > 1;

e Prove Conjecture 2.13 on the functional equation for the generating function for a () ,(n);
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e Prove the conjectures in section 3 on the behavior of the eigenvalues A and obtain better

upper bounds;
e Find, tighten, and explore the upper bound mentioned in Conjecture 3.12;

e Study the algebras generated by the four transformations composing the Willson matrices

and find analogs for larger p.
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