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Section I: Personal Introduction 

 In seventh grade, my science teacher pressed his broken piece of chalk to the board and within 

moments, a litany of dates appeared out of the haze of white dust. Our first science fair would take place in 

mere months and we were tasked with planning our own life sciences-related project from start to finish. 

Most of what we could feasibly experiment with ourselves, while interesting, was predictable. Growing 

Brassica rapa in a number of nutrient-deficient, light-starved conditions, as I had done in sixth grade, would 

not illuminate its secret environmental resilience. However, there was one realm of study teeming with 

mystery: microbiology. In particular, the idea of experimenting with bacteria captivated me; the phrase 

“there is more than meets the eye” most succinctly captures my curiosity.  

Another luring facet of bacteriology was its susceptibility to reductionism. It is very easy to believe 

that the longevity of these organisms has made it irrelevant to our study of modern life (namely humans), 

but more research is cropping up about their sophistication. They can communicate in chemical pathways 

between and within species, acting as a previous parallel to the nuances of human language. And while 

many other organisms also have this capacity of communication, the sheer scale upon which bacteria can 

coordinate behavior speaks to a much higher degree of complexity that requires further exploration. I was 

interested in one manifestation of this communication — how bacteria coordinate movement in groups.  

Given my limited access to higher power imaging equipment at that time, I simply quantified the 

extent of bacterial movement by measuring the distance from the edge of a colony to the center of the petri 

dish as a function of the concentration of nutritional medium I supplied. This first step into using 

mathematics to uncover properties of bacterial motion prompted me to inquire further. I was curious about 

motility patterns on a microscopic level, but I was unsure of how I could harness fluid, boundless motion 

in an equation or discrete variable. An even larger question soon emerged: what implications would this 
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research have beyond deepening our understanding of bacterial behavior? To answer these questions, I 

returned to the literature-scoping phase of my science fair project, entering a year-long period of stasis as I 

dissected numerous reviews and articles.   

In my Research Seminar class during my freshman year of high school, the time came for another 

independent science fair investigation of a higher caliber than our previous projects. Having already spent 

weeks immersed in the relevant literature, I was beginning to form a clearer vision for how I would go 

about quantifying differences in bacterial motion types. I even took my proposal one step further: after 

attending a World Science Festival panel on the human gut microbiome and scouring research on gut 

pathophysiology, I found the end goal this project desperately needed in the beginnings of, ironically, a 

connection I had made in seventh grade. The parallel I made between bacterial and human communication 

as discrete entities can now be extended further to the communication between the two species — a 

relationship that has recently begun to occupy the limelight of microbial research. Particularly, the two 

motion types I wanted to quantify were correlated with separate physiological phenomena; bacterial 

swarming (dynamic, collective motion) is associated with inflammation and pathogenesis whereas 

swimming (individualized, chaotic motion) is associated with homeostasis. My freshman year research 

project began to tackle the question of not only mathematically characterizing each motion type but also 

significantly distinguishing them. Employing graphite particles as my tracking device under a microscope-

camera system, I calculated torque and power for both swarming and swimming. Empowered by the stark 

differences in these mathematical values, I realized the diagnostic potential of this line of inquiry. If I could 

nuance my model with more mathematical parameters and an improved, controlled engineering design, this 

system could have applications as a diagnostic tool for gut disease (particularly Inflammatory Bowel 

Disease).  

By this point in my research journey, I had exhausted the materials provided by my high school 

and in order to increase the depth of my research, I needed access to an active matter physics laboratory; 

additionally, I wanted a mentor to look through my self-directed proposal and offer guidance when I would 

encounter inevitable hurdles. This proposal wholeheartedly embraced multiple disciplines: engineering (to 
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design a confined system for bacterial motion), computer science (to analyze motion patterns), physics (to 

quantify motility), and microbiology (the backbone of the study).  

Perhaps it was the amalgamation of so many scientific disciplines that hindered my success 

initially. As I began sending my proposal to numerous laboratories around New York City and neighboring 

states, my inbox filled with emails echoing the same sentiment of a lack of interest or an inability to 

accommodate another lab member. The Tang laboratory at Brown University took a leap of faith and 

graciously agreed to let me carry out my research with guidance from Weijie Chen, a Ph.D. student at the 

time.  

The weeks that followed were filled with thinking and re-thinking experimental design. The 

microgears I had designed on paper needed to be synthesized in gel in order to plot the vectors of bacterial 

motion. I just could not get any of my designs to work. With star-shaped gears, the bacteria would get stuck 

on the edges, rendering the gear static. How would I quantify bacterial motion if I could not even visualize 

it using a gear?  

The solution to my issue came to me when I observed the grand mechanics of how bacteria were 

moving the gear. I was getting stuck in the minutia of clumps of cells. Upon reviewing the recordings of 

my previous trials, I noticed that bacteria have “handedness.” If I made my gears asymmetrical, I could use 

this property to my advantage.  

 A J-shaped gear fell perfectly into place. The bacteria rotated the gear as if it were a native part of 

their colony. Hours faded as I jotted down notes and downloaded video files, excitedly showing my mentor 

my newest findings of the day. We rejoiced for a moment, and then we went back to scribbling micropipette 

amounts in black ink. The subsequent weeks were filled with new ideas hastily penned onto more pages of 

my lab notebook, ready to transition from thought to implementation. 

 The time came for me to analyze the motion I had now harnessed. I learned Matlab software 

(particularly Particle Image Velocimetry) to optimize the accuracy and visibility of the vectors I 

superimposed on each bacterial sample. In order to apply formulae I had researched for active matter, I 

needed to learn some new concepts in calculus and physics (e.g. using integrals and dot products in the 
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formula for the Vortex Order Parameter). After calculating three types of biophysical parameters, I refined 

my Python skills in order to code a Random Forest Classification Algorithm that distinguished between the 

mathematical profiles of swarming and swimming.  

 It was thrilling to see my ideas materialize. From what seemed like a far-fetched whim of ascribing 

mathematical values to motility, my research project finally came together by synthesizing various 

scientific fields. Even more exciting was the prospect of applying this novel tool in detecting Inflammatory 

Bowel Disease, an ailment with an unrefined, tumultuous diagnostic process. The mystery that allured me 

to this field in seventh grade is still present, perhaps even more so now that I have answered some questions 

and have many more lingering in the aftermath of my project.  

For high school students potentially interested in conducting research that straddles science and 

mathematics, my first piece of advice would be to read as much literature about your field(s) as you can. 

Constructing your experimental methodology with a strong understanding of the protocols, formulae, and 

algorithms at your disposal will improve your chances of obtaining the data you want. Of course, science 

is still unpredictable and you may not get the results you want even after exhausting all possibilities. 

Patience and disappointment are fixtures in the research process, so setting small goals for yourself will 

make the long-term project feel more achievable. Most importantly, curiosity is the greatest motivator in 

any line of research. The enigma of bacterial behavior gripped me from the start of my research career and 

this fascination has sustained my faith in my project. After encountering and overcoming the numerous 

obstacles in my research, I’ve come to truly enjoy the trial-and-error process so characteristic of scientific 

inquiry. 

 

Section II: Research 

Abstract 

Gastrointestinal illnesses afflict more than 100 million people in the U.S. alone and are often indicated by 

gut microbiota motility. Typically, swarming bacteria are indicators of infection while swimming bacteria 

are more innocuous. Current diagnostic methods for intestinal diseases are lengthy, expensive, non-specific, 
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or lead to serious complications. This study proposes a novel way to diagnose Inflammatory Bowel Disease 

(IBD) through quantitatively distinguishing bacterial motion. Current methods of discerning bacterial 

motility involve only qualitative description without consideration of potential medical applications; no 

quantitative models to differentiate bacterial motility exist. In this study, a novel interdisciplinary diagnostic 

tool was developed that distinguishes swarming and swimming SM3 bacteria quantitatively for the first 

time. Photolithography was used to create PDMS sheets and microgears for studying both motilities. 

Software captured images for Particle Image Velocimetry (PIV) analysis for the calculation of Vortex, 

Nematic, and Polar Order Parameters, which were fed into a developed machine learning algorithm; 

accuracy was analyzed to ascertain the importance of each variable in motility distinction. Vortex Order 

Parameters (VOPs) were used to generate a Vicsek model for differentiating swimming and swarming 

which demonstrated the importance of cell-cell alignment force in motility distinction — the model yielded 

high and low VOP values for swarming and swimming respectively. Studies of motility on intestinal tissue 

supported modeling trends from prior PIV analysis on agar. This novel tool can be tested in a variety of 

intestinal diseases to provide a preliminary diagnosis, operating more economically, efficiently, 

specifically, and safely than conventional procedure. 

 

Introduction 

Gastrointestinal Disease 

Intestinal diseases result in 14 million hospital admissions, more than 230,000 deaths, and more than $140 

billion in healthcare costs annually in the U.S. (Almario et al. 2019). One facet of intestinal disease is 

Inflammatory Bowel Disease (IBD), which comprises Crohn’s Disease (CD) and ulcerative colitis (UC) 

and is defined as the inflammation of the gastrointestinal tract (Seyedian et al. 2019). IBD can cause painful 

symptoms such as diarrhea, abdominal pain, and bleeding of the anus (Wehkamp et al. 2016). In 2017, 6.8 

million people worldwide were diagnosed with IBD, with the prevalence rate increasing by 4.8 per 100,000 

people from 1990 to 2017 (Alatab et al. 2019). In the US alone, $1.7 billion of healthcare costs are attributed 

to IBD care (Hansberry et al. 2017). Current diagnostic methods either carry risks, excess expenses, or 



 

6 

require long wait times to receive results. While their clear imaging makes them an important part of the 

diagnosis process, endoscopies can cause complications and cannot access the full intestine (Spiceland and 

Lodhia et al. 2018) — they are also expensive procedures and still require other supplementary tests to 

piece together a diagnosis (Nemati and Teimourian 2017, Papagrigoriadis et al. 2004). Scientists have been 

searching for noninvasive biomarkers of intestinal disease for diagnosis via blood or fecal tests (Hansberry, 

David et al. 2017), yet those that have been discovered are non-specific, measured at arbitrary “cut-offs,” 

or unable to predict a relapse for patients in remission (Dragoni et al. 2020 and Ikhtaire et al. 2016). Blood 

tests (such as CBC panels, I-FABP, DAO, Zonulin, and D-lactate) either lack sufficient data for threshold 

calibration or specificity (Linsalata et al. 2020). Thus, serological tests, while helpful in assessing a grander 

level of physiological function, are not ideal when simple, specific tests can aid in an initial diagnosis of 

intestinal disease (Sellin and Shah 2012). Positivity rates in blood tests for current biomarkers (even those 

specific to intestinal disease) are also highly variable and can be as low as 1.4% to a maximum of 71% 

(Ince et al. 2019 and Lewis 2011). In addition to non-specificity, blood tests take one to three days for 

reporting in a non-emergent setting. Fecal tests, such as calprotectin, lactoferrin, and hemoccult tests, 

usually provide information for a wide range of conditions, from cystic fibrosis to cirrhosis to food allergies; 

they also operate on thresholds with a great degree of variability for active disease and lactoferrin, in 

particular, is not stable in stool for long at room temperature (Ikhtaire et al. 2016). Urine tests, which are 

not usually used for intestinal diagnosis, are still greatly time-consuming and non-specific (Linsalata et al. 

2020). In addition to the aforementioned limitations, fecal tests take one to two weeks for reporting (Hejl 

et al. 2017). Colonoscopies, while a gold standard in diagnosis because of clear imaging capacity, carry a 

0.25% risk of bowel perforation, burns, and bleeding; although these complications seem improbable, they 

are life-threatening (Zauber 2014). Increased time spent waiting for results to confirm the diagnosis of IBD 

(e.g. with fecal and blood tests) can have adverse health risks, such as increased strictures and necessitating 

invasive intestinal surgery (Lee et al. 2017, Taylor et al. 2016). Given the gravity of both the toll on 

individual patients and the American healthcare system, there ought to be a method for streamlining 
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diagnoses and prognoses as well as decreasing in-patient procedures and hospital admits — one that will 

be economic, efficient, safe, and accurate.   

Role of Bacteria in Disease 

Evidence links bacterial motility to intestinal disease, particularly Inflammatory Bowel Disease (IBD) 

(Rooks et al. 2014, Stantonr and Savage et al. 1984). As opposed to swimming bacteria in the intestines, 

swarming bacteria are also associated with virulence (Allison et al. 1994, Mazzantini et al. 2016, Overhage 

et al. 2008). Bacterial swarming is qualitatively characterized by a collective, dynamic flagellar movement 

on a partially solidified surface that bacteria employ in various environments to optimize their acquisition 

of resources as shown in Figure 1 (Partridge and Harshey 2013). In this type of movement, bacteria utilize 

their flagella to navigate, two-dimensionally, through a medium and acquire necessary materials for overall 

survival (Darnton et al. 2010). By contrast, bacterial swimming is qualitatively defined as an individualized, 

three-dimensional flagellar movement in liquid medium as shown in Figure 1 (Kearns 2010). Thus, 

bacterial movement on soft surfaces, and under confinement, exert distinct properties on the host that have 

been underexplored. Swarming manifests most starkly in intestinal diseases. Proteus sp., Salmonella 

enterica, and Campylobacter jejuni are examples of swarming bacteria that cause a variety of symptoms of 

gastrointestinal distress (Golden and Acheson 2001, Hamilton et al. 2018, Kim et al. 2003). SM3 (a strain 

of Enterobacter sp.) served as the focus of the study to examine motility in the context of IBD. For this 

disease, it is necessary to develop a specific, accurate test with more efficiency and economy — a simple, 

microbiological test distinguishing bacterial motility to demonstrate infection or a presence of intestinal 

stress (Elhenawy et al. 2019) at the beginning of the diagnostic process to avoid unnecessary procedures as 

well as to prognosticate for patients in remission. 

Proposal of Study 

This study proposes taking advantage of differences in bacterial motility to design a potential diagnostic 

tool that can differentiate between swarming and swimming in IBD patients. This tool, upon further 

refinement, would reduce diagnostic cost by $1450, time by several days, and risk to none as well as 

increase specificity by at least 20% (an extension of the agar work conducted in this study). Currently, there 
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are no quantitative models that distinguish between swarming and swimming bacteria and current 

definitions for motility are only descriptive with limited studies (Hall et al. 2018). Prior research (without 

applications in medical diagnosis) has investigated swimming bacteria rotating microgears, in open media 

and confinement, as shown in Figure 2 (Lushi et al. 2014, Sokolov et al. 2010, Wioland et al. 2013). 

Microgears and subsequent calculations of torque and power were used to track and assess swimming 

movement (Di Leonardo et al. 2010, Sokolov et al. 2010, Wong et al. 2013). Studies of bacterial swimming 

under confinement, via polydimethylsiloxane (PDMS) sheets with circular wells, were used to amplify 

swimming motion and observe motion patterns (Beppu et al. 2017, Zhai et al. 2017, Wioland et al. 2013). 

Models have been made for swimming and swarming bacteria respectively, but they have not provided 

sufficient detail, not fully characterized the motility types, and not analyzed both motilities in tandem (Be’er 

et al. 2019). Using prior biophysical microbial research as a guide, the provision of clear mathematical 

distinctions between swarming and swimming will be crucial for efficiently, economically, safely, and 

specifically diagnosing intestinal disease in the future. 
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Key Figures and Equations 
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Machine Learning Algorithm (with NOP and POP parameters) 

Equipped with data from the Vicsek model, a Random Forest algorithm was developed to 

distinguish between swarming and swimming motilities in SM3 using VOPs as well as two other 

parameters: Nematic Order Parameters (NOP) and Polar Order Parameters (POP), both of which have been 

used in characterizing the motion of active matter (Großmann, Robert et al. 2015). Polar order parameters 

and nematic order parameters both measure the degree of alignment between particles (Figure 4). POP 

treats particles as single-arrow vectors and NOP treats particles as double-arrow vectors (Figure 4). 

Accuracy metrics were extracted and analyzed by varying test split and parameter usage (Figure 5). One-

way ANOVA and Tukey’s post hoc tests were performed on machine learning parameter usage data. A 

Kruskal-Wallis test was performed on dataset test split data. A P-value benchmark of less than 0.05 was set 

for consideration of statistical significance. Values are presented as means with ± standard deviation (SD).   

 

 

 

 

 

 

 

 

 

 

 

 



 

11 

Vicsek Modeling Reveals Mathematical Differences between SM3 Swimming and Swarming 

         To uncover the mathematical variable(s) responsible for the pattern differences between swarming 

and swimming SM3, a Vicsek model was coded to reflect the vectorial motion shown through Particle 

Image Velocimetry (PIV). When generating the Vicsek model, the code was run thirty times per motility 

and the average Vortex Order Parameter (VOP) was generated. Two variables were manipulated to produce 

this result: the radius (r) of the circle encompassing the particle and other particles deemed its “neighbors” 

and the noise variable (𝜂). The number of particles (N) was kept constant to reflect equalized cell density 

(thus inherent motility properties being the only factors influencing distinct motion patterns). The average 

VOP was calculated according to the aforementioned formula, which characterizes the degree of ordered, 

centric movement from zero to one (Wioland et al. 2013). For swimming SM3, the model reflected the 

disorganized behavior of swimming bacteria in reality (Figures 7A and 7B). The motion quantitatively 

manifests in a low VOP value of 0.004 ± 0.079. For swarming SM3, the model reflected the uniform 

behavior of swarming bacteria in reality (Figures 7C and 7D). The motion quantitatively manifests in a high 

VOP value of 0.895 ± 0.031. 
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Analysis of Machine Learning Algorithm Classification Accuracy 

         The machine learning model developed had classified motilities based on PIV files of 74 µm wells 

with swarming and swimming SM3. Analyses of the accuracy of the model were performed through 

manipulating dataset splits (Figure 12A) and parameter usage (Figure 12B). Algorithm accuracy was 

measured across dataset test splits (10% testing, 20% testing, and 30% testing) and it was observed that 

there was no significant difference in the model’s accuracy through this manipulation (Figure 12A). Thus, 

the algorithm proves to be consistent. Using a test split of 20%, the impact of Vortex, Nematic, and Polar 

Order Parameters was ascertained in measuring classification accuracy by removing each parameter from 

the algorithm. It was determined that VOPs were the most influential on motility and NOPs were the least 

influential. Nevertheless, all three parameters were valuable in classifying motility since the algorithm's 

mean accuracy with only two parameters (VOP and POP) was 6.7% lower than the mean accuracy using 

all three (Figure 12B). Further refinement of the model must be conducted with more training data, varying 

well diameters, expanding to other strains and species of bacteria. In comparing positivity rates of current 

biomarkers in serological tests (Ince, M. Nedim et al. 2019 and Lewis, James 2011), this algorithm classifies 

with at least 20% more accuracy with correlation to disease because of the use of SM3. 
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Cost Analysis of Proposed Diagnostic Tool and Standard IBD Diagnostic Protocol 

Given the preliminary demonstration of bacterial motion on natural, bumpy intestinal tissue, this 

methodology can be extended for diagnostic use, particularly operating on a stool sample since motility 

distinctions maintain on uneven surfaces (i.e. not simply manifestations on agar). For a positive 

experimental test (i.e. presence of swarming), blood and fecal standard tests could be bypassed and a 

colonoscopy would not be necessary for preliminary diagnosis (only to be conducted for further information 

on intestinal condition). Complications listed do not include the additional complications caused by long 

diagnostic times (intestinal strictures and a higher risk of surgery) as mentioned before (Lee, Dong-won et 

al. 2017, Taylor, Sarah et al. 2016). In conjunction with the machine learning algorithm’s accuracy of 

91.1%, these benefits illuminate a potential avenue for intestinal disease diagnosis: one that is economical 

(only $50), efficient (takes only a few hours), accurate (differentiating with 91.1% accuracy), and safe 

(relies on a stool sample only) (Figure 14).  

 

Brief Conclusion 

 Despite progress made in the field of microbiology to understand bacterial motility, prior research 

has not made use of idiosyncratic, microbial biophysical properties to inform the diagnosis process of 

intestinal diseases. In this study, a diagnostic tool based on mathematical and visual patterns of swarming 

and swimming SM3 was developed that is the first to quantify distinctions in bacterial motility, which has 

potential economic, safety, specificity, and time-saving benefits.  

 In developing a machine-learning algorithm and a Vicsek model, three parameters (VOP, NOP, 

and POP) demonstrated the uniformity of swarming motion in contrast to the fragmentation of swimming 

motion; VOP proved to be the most crucial variable in categorizing motility. The methodology and 

algorithm serve as a basis for a diagnostic tool for intestinal disease upon further testing and refinement. 

The Vicsek model revealed the intrinsic noise variable to be responsible for the disparate motion patterns. 

Biologically, intrinsic noise partially manifests in cell length differences between swarmers and swimmers. 
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Further genomic analyses can be conducted to elaborate on the role cell length plays in mathematical 

differences between swarmers and swimmers.   

 The most important consideration for the diagnostic tool stems from what could be perceived as a 

limitation. The human gut is polymicrobial and thus far, only one strain of bacteria has been analyzed at a 

time. A perceived limitation would be attributing one set of quantitative parameters (especially VOP) to a 

polymicrobial culture. Further experimentation must be done with polymicrobial cultures; however, it is 

hypothesized that the quantitative parameters will categorize the presence of swarming in the culture (even 

if the rest of the bacteria are swimming), thus allowing scientists to be aware of intestinal inflammation and 

categorize the strain if more studies are conducted. The presence of swarming in the culture will affirm the 

need for more diagnostic testing. Once the model is further streamlined with a larger volume of SM3 data 

and varied data (different bacterial strains), it can be used as a first assessment of intestinal disease in a 

safe, cost-efficient, accurate, and time-saving way.  
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