1 Personal Background

Arrghh. Again I start over. I clear my mind and refocus my thoughts. “Six and six is six, seven,
eight, nine, ten, eleven, twelve,” I count on my fingers. This time I will not fail, like the two past
times. My steel-hard will is clenched into an iron fist of resolve. My mental faculties are determined
to overcome this momentous self-imposed challenge, this task of self-discovery, the answer to the
question that has been plaguing me this day-what is six times six?

Perhaps I should explain the details of the situation, as I am sure that to you figuring out six
times six does not seem to be much of a challenge. It certainly does not any more to me, and has
not since this night. However, as my four-year old self, lying in bed, staring at the ceiling, trying
to perform an operation that I only knew how to perform from the tidbits I heard my parents and
brother discussing, this was quite a gargantuan task indeed. I was supposed to be getting to sleep,
but not even my bedtime could interfere with my quest for knowledge. I did not let myself go to
sleep that night until T had painstakingly added six and six, and six more to that, and six more to
that, and six more to that, and six more to that. Even then, I was not done. I redid the entire
process several times, to make sure that I was correct.

And so I was. For as long as I can remember, I have been interested in math. I have not just
been interested in how math works, but why it works. I remember in third grade asking my dad
to explain to me why division by zero is impossibleand understanding it enough to explain it to
my teacher, who seemed to think that 3/0=0. During my sixth grade school year, I worked with
my father, completely outside of school, on learning algebra, because I was frustrated and bored
with the lack of challenge I found in the math taught at school. However, my dad was unable to
sufficiently explain to me the “why” part on many of the concepts I inquired about, and so I did not
bother to memorize a great deal of the information tossed at me. I've noticed that about myself-I
really am able to do math when I understand why it works, and so I am always questing to discover
the hidden reasons behind apparent truths.

My Intel project was in many ways in tune with the mathematical theme song that has been



playing throughout my life, but it was also distinct in an important way. As we will discuss later,
the goal of my research was to investigate both the “how” and the “why” behind a mathematical
truth. In this context, my project was a simple extension of the journey I had begun that night as a
four-year-old. Yet the most important aspect of my investigation was that I was no longer treading
a path worn smooth by the passage of those before me. I was no longer at a junction where I could
ask my parents for the answers, nor indeed any human being, living or dead (that is, through their
works, not through a medium). At long last, I had reached the stage of mathematical maturity and
had embarked on my own original investigation into the nature of the universe. As I progressed with
my research, the spark of interest and fascination with mathematics that had been kindled earlier
in my life grew exponentially into a raging wildfire.

The project itself stemmed from my interaction with Dr. Ryan Zerr, a professor at the local
university. I had begun studying one-on-one with him after taking one of his classes first semester
of my sophomore year. By the end of my sophomore year, I had a fanciful notion: rather than
being a passive learner of mathematics, I wanted to try to create (or discover, depending on your
philosophical tendencies) new inroads in the subject. I confided this idea to Dr. Zerr, with the
addendum that I would love to work on any sort of project that he could suggest—my goal was to
experience true mathematical development in general rather than influence any one specific segment
of math in particular. After a few weeks, Dr. Zerr came across a problem posed in an article in the
Mathematical Association of America’s monthly journal, and he related it to me. The paper itself
had been concerned with investigating what it called difference boxes. At the paper’s conclusion,
the author posed a question about how to extend his results and ideas to difference triangles. It was
this investigation, the details of which will be discussed later, that marked my first foray into the
untamed jungles of the mathematical wilderness.

My next school year was filled with intrigue, mystery, and copious quantities of hard work.
Because I took the majority of my classes at the local university, every other day I would have
two consecutive free hours at my high school. I took to planting myself in the school cafeteria,

armed with a notebook and pencil, where I would wrestle with ideas while students around me



chatted about the typical high school gossip material. At home, I spent hours either poring over
my notebook or utilizing the sophisticated computing software package, Mathematica, to help me
formulate conjectures or gain further insight into the problem at hand. Every week, I met with Dr.
Zerr to discuss my progress and formulate a plan for the following seven days of toil. I owe Dr. Zerr
tremendous gratitude for his help in guiding my research and helping with parts of the ultimate
write-up.

Throughout my investigation, I found my interest in the problem only grew. Every new question
that I answered seemed to pave the way for a dozen more inquiries. It was thus that when seeming
disaster struck, I used the occurrence as motivation to explore these new avenues rather than succumb
to discouragement.

In the December issue of the Mathematical Assocation of America’s journal, there was a letter
to the editor which stated that the article Dr. Zerr had read was not doing any new mathematics.
Indeed, the results in that article had been discovered and published nearly fifty years ago! Rather
than being a lone voyageur in the wilderness, I suddenly found that I was treading in the footsteps
of those before me. Indeed, Dr. Zerr gathered other papers on this topic, which we had learned
was officially titled Ducci sequences, it became clear that many of my results up to this point were
already common knowledge. However, it also turned out that there were several results that were
completely original. I used my newfound knowledge from reading the literature, combined with
my own discoveries and innovations, to expand everything that I had done before. Ultimately, I
managed to alter what had seemed the destruction of the edifice of my research into an event that
built it into an elegant castle of original mathematical truth.

Throughout my investigation, I found that there were two key ingredients to my ultimate suc-
cess. The first was passion-the love I had for the subject I was studying. It was through my natural
curiosity and desire to understand that I was able to continually come up with new ideas for my re-
search. The second was perseverance. As with many investigations, it seemed that every conception
of mine that worked was born from the failures of a hundred others. Combined, these two aspects

formed an unbeatable combination. It is a mixture of these two ingredients that I would recommend



to anyone interested in a similar endeavor.

2 Research

Now let’s talk about my research itself. The original paper that Dr. Zerr gave me posed a question
along the following lines: given a triangle whose vertices are labeled with any real numbers, label
the midpoint of each side with the nonnegative difference between the labels on the vertices of that
side. Now, connect all of the midpoints to form another triangle, and repeat this process indefinitely
(see Fig. 1). Is there a simple way to describe the “behaviors” of these so-called difference triangles?
That is, if we are given any triangle, is there an easy way to determine ahead of time what pattern,

or lack thereof, the labels will eventually adhere to?

I investigated this problem for several months, and I found a number of interesting properties and
the beginnings of an answer to this question. However, when Dr. Zerr found the other papers dealing
with similar questions, they dealt with these difference objects as lists of numbers, or vectors, rather
than triangles or squares or n-gons. Hence, Dr. Zerr and I switched our notation to be consistent
with that of the literature. In our newly discovered language, we were studying the Ducci map, a

function that is defined for vectors of length 3 as

f(vi,v2,v3) = (lv1 — wal, [v2 — 3], |z — v1]),

where here we use f to denote the Ducci map. Starting from a given vector, repeatedly applying
the Ducci map builds a sequence known, unsurprisingly, as a Ducci sequence.

Most of the work that had been done in the past focused on the generalized version of the Ducci
map, where f(vi,vs,,v,) = (Jv1 — val, |va — v3], ..., |Un — v1|). That is, to build a new vector from a
given one, take the nonnegative difference between adjacent entries in the given vector. These other
studies had mainly focused on the special case where vy, vs, ..., v, were all integers'. My plan was

to move analysis of this function into a completely different realm: that of the real numbers, where



my work up to this point had been.

Regardless of the terminology, my goal remained the same. I was seeking a way of describing the
behavior of a Ducci sequence without actually having to calculate large amounts of the sequence.
I became intrigued by the long-range, or asymptotic, behavior of Ducci sequences-that is, as we
apply the Ducci map again and again, what do the resulting vectors look like? Do they start to
have values that spiral off and grow larger without bound? Does the sequence of vectors eventually
form a repeating, or periodic, sequence? Maybe at some point our vector reaches the trivial periodic
vector-the vector consisting of all 0s. In any case, these are mathematically interesting questions.
Note that a computer could never answer them in general, as they reside outside of the realm of
mere brute-force computation.

The above questions, and many more, were ones that I investigated in my journey. Some answers
were obvious. For example, if we look at the definition of the Ducci map, it is clear that it always
Spits out a vector with nonnegative entries. If we again apply the Ducci map, the largest value in
the vector cannot increase, since we subtract some nonnegative number from it. This means that
the vectors in a Ducci sequence cannot spiral off to infinity.

Other answers were not so obvious, but they could be found in the literature on the topic. There
were a few of these that I made use of in my own work. For example, it had been proven that all
periodic vectors (that is, vectors that give rise to a sequence that cycles back to its beginning, as in
Fig. 2) must have all of their nonzero entries equal. Also, the only odd length vectors that can ever
have a Ducci sequence containing (0,0, ...,0) are those of the form (a, a, ..., a) for some real number

a.

INote that there were several, but not many, papers allowing v1,v3, ...,un to be any real numbers.



(1,0,1)

(0,1,1) 7 1(1,1,0)

Fig. 2: Vectors in a periodic Ducci sequence.

In many of my numerical experiments, I found that the Ducci sequence under consideration often
eventually reached a periodic vector, after which point it would get locked into a repeating cycle.
It was not hard to show that this must happen if our starting vector has a certain simple property,
which I called homogeneity. A vector (vi,vs, ...,v,) is homogeneous if it can be transformed into a
vector with integer entries by multiplying by a nonzero number and then adding any number. For
example, the vector (7 +v/2, 27 + /2, 37 4+ v/2) is homogeneous since, upon multiplication by % and

adding —%, we obtain (1,2, 3). Since for any vector v = (v1,va,...,v,), we see that

f(av + (ﬂ)n) = f(OtUl + ﬂ,OtUQ + 137 -ey QUp + B) = |(1|f(1}),

n times

where we define (8),, = (8, 5, ..., 3), it follows that any such vector behaves just like a vector with
integer entries. But since an integer-entried vector only has a finite number of ways it can be put
together (remember, its maximum value will not increase after the first generation), it follows that
such a vector must be eventually periodic, and so must be v.

This was only half of the story. What happens with those vectors that are not homogeneous, or
as I dubbed them, heterogeneous? This was a much harder question to answer, but it was fascinating
to explore. The focus of my research became to attack the following question: which heterogeneous
vectors, if any, are eventually periodic and which are not? Before we get to my methodology and
results, let’s discuss why this is an important question to ask in the first place.

A Ducci sequence is an example of a discrete dynamical system. That is, we can think of each

vector in the sequence as a state of the system, and the Ducci map as a rule for evolving this system.



As we will show later, their behavior is extremely sensitive to initial conditions, and hence Ducci
sequences can be thought of as chaotic. Such systems have been well-studied for their connections
to various areas of mathematics and physics, ranging from quantum mechanics to the Riemann
hypothesis. While it may not be that Ducci sequences in particular hold the key to solving problems
in such areas, it is possible that the tools used to determine the structure of something like Ducci
sequences could be used to gain insight into analogous systems. Thus, I set out to determine the
long-range behavior of Ducci sequences, and in particular their eventual periodicity or lack thereof.

My first order of business was to develop an easy way to see if a vector is heterogeneous or not.
To show a vector is homogeneous, one just needs to find the appropriate multiplier and number to
add on to make all of its entries into integers. Yet showing that no such numbers exist seems a much
more daunting task—there is no way to check every single pair of numbers and show that they do not
suffice. Using a string of lemmas, or small results used to prove a larger result, I was able to develop
a method for checking whether any vector v = (v, v2, ...,v,) is heterogeneous. First, consider the
vector v' = v — (v1)n, = (0,02 — v1, ...,v, —v1). Choose any one of v'’s nonzero entries and divide by
it2. If the resulting vector has at least one irrational number, then v is heterogeneous. Otherwise,
v is homogeneous. The proof that this method actually works is a good exercise for the interested
reader.

Next, I came to my first of two major theorems. This first theorem, shown below, can be ex-
tended to show that any heterogeneous odd-length vector remains heterogeneous under the Ducci

map.

Theorem. Let v = (0,vs,...,v,) be a heterogeneous vector of odd length with nonnegative entries.

Then f(v) is also heterogeneous.

Sketch of proof. It is thus sufficient to for us to show that if v is heterogeneous, then f(v) is also

heterogeneous. We will prove the contrapositive; that is, we show that if f(v) is not heterogeneous,

2Note that if ' has no nonzero entries, then v must be homogeneous with all entries equal.



then v must not be heterogeneous either. To this end, suppose f(v) is homogeneous. We calculate
f) = (v2)n = (0, |vg — va| — v, ..., |Vn| — v2) = (0,0}, 0%, ...,v},) = 0.

Case 1: Each v} is rational. Here is where the slick part comes into play. We define the sequence

L;,2<i<mn,as

=1, if v; <wigr;
Li=

L, ifv > 0.
We see that Ly, = L;(|vi41 — vi| — v2) = v; — v;41 — Ljvs for 2 < i < n — 1. Then consider the

sum

Lyvy + Lgvg + ... + Ly_1v;,_4 + v;,

This equals

Vg — U3 — LigUg +v3 —v4 — Lgvg + ... + U1 — Uy — Lipp_1v1 + vy — Va.

We rearrange the above to

Vg —v3+ V3 —Vg+ . +VUp—1 —Vp + Uy — V2 — V(Lo + L3+ ...+ L,_4),

which, voila, instantly collapses to

—(L2 “+ L3 + ...+ Ln—l)v2-

But since each L;v} (and v}) is rational, it follows that their sum must also be rational. Since
each L; is either 1 or -1, and there are an odd number of them in the above sum, it follows that
Ly + L3+ ...+ L,_1 is nonzero. Hence v, is rational as well. Since v = |vg — va| — vy is rational, it
follows that vs is rational as well. Similarly, v§ = |vy — v3| — vs is rational, so vy must be rational.
In this way, we see that all of the v; must be rational. Hence v is homogeneous, and this case is
complete.

Case 2: There exists a v} that is irrational, where v’ and each v} is defined as above. In this case,

we can just transform v so that v’ does not have any irrational entries (remember, v' is homogeneous)



and go through a similar argument to Case 1.

So what does this mean? Well, since we know that an odd-length heterogeneous vector gives rise
to another heterogeneous vector after applying the Ducci map, we see that no matter how many
times we apply the Ducci map, a heterogeneous vector remains heterogeneous! But all periodic
vectors are homogeneous. Thus, the Ducci sequence of an odd-length heterogeneous vector can
never actually start repeating. However, we can use a result from the literature, which states that
as we apply the Ducci map more and more times, every vector approaches a periodic one. At this
point, we have a very powerful understanding of the asymptotic behavior of odd-length vectors.

But I was not finished yet. We know that heterogeneous odd-length vectors must approach a
perioidic one, but which periodic one? One’s intuition likely says, the zero vector! After all, aren’t
the entries on these vectors continually shrinking? As it turns out, this is not the case—a paper in the
literature presents a vector of length 7 that asymptotically approaches, but never reaches, a nonzero

periodic one. I then found examples of lengths 9 and 15. The basic idea behind how these work
1

om }, although always shrinking, asymptotically approaches

is the same as why the sequence {1 +
1 rather than 0. I was not able to answer this question in general, but I was able to formulate a
solution for vectors of length 3.

For a heterogeneous length three vector, v = (v1,v2,v3), we can greatly simplify our analysis by
making a simple reduction. First, f(v—(z)3) = f(v), so we can subtract any number from all entries
of v without affecting v’s aymptotic behavior. A property that is unique to vectors of length 3 is
that the order of their entries does not matter. Hence, we can subtract the smallest of v’s entries
and then order the resulting entries in increasing order. Thus, for example, we can convert (7,2,1)
to (0,1, 7 — 1) without affecting the vector’s asymptotic behavior. But such vectors will always have
first entry of 0, so we only have to worry about the last two entries, namely (1,7 — 1).

If we are now going to be working with ordered pairs, it makes sense we should find f’s analogue

on ordered pairs of numbers. That is, we want a function h that, given the ordered pair version of

v, predicts the ordered pair version of f(v).



{a,b,e} "> {la—b], b~ |, |c ~al}

0,0, ) 0,76}

(o 8) - (7,9)
Fig. 3: The function A

It is possible to directly calculate h, and we find that

(2a — b, a), if b < 2a;
h(a,b) =
(b—2a,b—a), ifb> 2a.
The rest of my paper is essentially analysis of h. I then establish three main points, which I

present here without proof. In all cases suppose that (a,b) is obtained from a heterogeneous length

3 vector.

1) If b < 2a, then h(a,bd) is the same distance from the line y = z as is (a, b).
2) If b > 2a, then h(a,b) is closer to the line y = x than is (a, b).

3) For any (a,b), there is an integer i such that, if we define h(a,b) = (o, 8), 8 > 2a.
These results are shown graphically in Fig. 4.

After some thought, one can see that the only possible asymptotic behavior consistent with rules
1), 2), 3) is if our ordered pair is spiraling down towards (0,0). Indeed, it is possible to rigorously
prove that this must be the case.

This covers my work for the Intel STS. Let us recap the major points made. First, we defined
a property called heterogeneity and showed how to determine if a given vector is heterogeneous or
not. Secondly, we proved that all odd-length heterogeneous vectors asymptotically approach, but
never actually reach, a periodic one. And thirdly, we showed that all length 3 heterogeneous vectors

approach only the zero vector. Many questions remain open, such as the behavior of vectors of even
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length (in which case heterogeneity is no longer as powerful of a criterion for eventual periodicity;
consider (0,1,4/2,1,/2,1), which is heterogeneous but eventually periodic) and for which vector
lengths all heterogeneous vectors must approach the vector of all zeros.

In total, the work was certainly demanding, but the rewards I reaped were well worth the toil.

To be on the other side of the math textbook was truly an amazing experience.
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