
Hierarchy of major buffers

The Effects on Read Performance from the Addition of a Long Term Read Buffer to YAFFS2

Sam Neubardt

My research project examined the effects on read performance from the addition of a long term

read buffer to YAFFS2. YAFFS (Yet Another Flash Filing System) is a file system, the program that

organizes data on a storage device (like a hard drive), that is specialized for flash memory. Flash

memory is a type of storage device that is typically found in embedded devices, like cell phones or

PDA's; USB “thumb drives” also contain flash memory. Hard drives and flash memory have several

key differences. Flash memory is smaller and uses less power than a hard drive, making it a popular

choice for systems that run off a battery and must

conserve power usage. Data on a storage device is

organized into pieces called sectors or pages. This is

done to allow data to be changed without having to

modify everything on the drive. Hard drives have

much smaller sectors than flash memory, which does

give them a slight advantage in performance. While

the data on a hard drive can be changed many times

without causing physical wear on the drive, the data on

a flash memory device can only be changed a certain

amount of times (often over 500,000 times per page,

but it still adds up) before the reliability of the drive starts to

corrode. YAFFS is typically run on the Linux operating system, as was this experiment.

Caching (here equivalent with buffering) is the process of storing data so it may be

quickly accessed. Buffers are stored in RAM because accessing data from RAM is much faster than

retrieving data from a storage device. Caching is an important part of all file systems, especially for

those intended for use on flash memory, as it can greatly improve the speed at which data is read off the

drive. As flash memory is primarily used in embedded devices, where power consumption and thus

battery life is of great concern, reduced disk access can result in improved battery life. Since access

times from RAM are shorter than those of flash memory, an overall speedup in terms of read operations

also occurs when data is read from RAM rather than from flash.

 YAFFS contains a short term buffer, called the “short operations cache,” that is used to group

small input and output operations together (reducing wear and improving performance), but has no

facilities for long term caching. A long term cache would be larger and would store data that is

requested frequently for a longer period of time. The greatest performance increase would be seen from

caching the most frequently accessed data, which would then be held in the cache for a longer (if not

indefinite) period of time, rather than temporarily as in the short operations cache.

The Linux kernel provides a data cache of its own called the page cache. When a

request for data from a file is made, the kernel first checks the page cache before initiating an I/O

(Input/Output) operation. If current data is found in the cache, it is returned; if not, the data is read

from the device in which it resides and inserted into the cache. This cache exists above the file system

layer; if a request is satisfied from the page cache, the file system may never receive the request.

It was hypothesized that adding a long term cache would lead to increased. Simulated flash

hardware was used to test this hypothesis. Actual hardware was not used to avoid the irregularities that

occur between different vendors and models. Although access times between RAM and flash differ, the

flash simulation code adds a delay whenever the simulated device is accessed, to reflect the difference

in performance and to better emulate real-world access speeds. The experiment consisted of two test

groups, one with and one without the added long term buffer, and two tests were performed per test

group. A program for benchmarking file system performance, called Iozone, was used to measure and

record the performance of the two test groups. The test consisted of reading and then re-reading a set

of data from the drive. The first time the data was read, it had to be read from the disk, since data

would be added to the cache after it had been read at least once (caching data before it has been

explicitly accessed is called preemptive caching, but was beyond the scope of this research). However,

the second read offered the opportunity for a cache hit. Contingent on the data being fetched from the

cache, the second speed should have been faster than the first.

Figure One
Read Test (Record Length = 8 Kb)

0

50,000

100,000

150,000

200,000

250,000

File Size (Kb)

K
b/

s

Without YAFFS Buffer 229383 211210 194982 210173 214177 216350 218652 217842

With YAFFS Buffer 238006 207433 210546 208394 203619 216928 218220 220458

64 128 256 512 1024 2048 4096 8192

Figure Two
Re-Read Test (Record Length = 8 Kb)

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

File Size (Kb)

K
b/

s

Without YAFFS Buffer 296388 296239 240171 220211 219220 218944 218466 217727

With YAFFS Buffer 295089 290216 262593 216673 216124 217594 218839 220061

64 128 256 512 1024 2048 4096 8192

The Read Test (Figure One) established the baseline for both versions of YAFFS. Since it was

the first time the test file was requested, the data came from the flash drive. Figure Two (“Re-Read

Test”) demonstrated the effect of buffering. Throughput for smaller files jumps higher in the Re-Read

test in both cases, showing that versions both with and without the additional buffer are experiencing

buffering from some source, most likely the Linux page cache. If this buffer were not present, the

unmodified versions of YAFFS would not experience the increase in throughput shown. The negligible

difference in throughput between the unmodified and modified versions of YAFFS remained consistent

throughout the tests.

The results did not support the hypothesis, in that the addition of complementary buffer to

YAFFS2 did not lead to improved read performance. The Linux kernel did a competent job buffering

data in this case which made the added cache unnecessary. Although the addition of a cache did not

lead to any usable improvements, the data could be used to better tune both YAFFS and the Linux page

cache.

 I've been interested in computers since my family got our first one when I was five. When I

entered my schools science research program in the 10th grade a topic involving computers seemed like

the logical choice. I was interested in Linux and explored different possibilities using it, ultimately

deciding on file systems.

I performed the research in my room at home. My mentor, Charles Manning (who wrote

YAFFS) lives in New Zealand so face to face collaboration was not an option and correspondence was

limited to email. However, since no actual lab was required, the separation was not the hindrance it

would be in a more physically applied discipline. Summer weather, coupled with the extra heat

generated from the computer, proved to cause more of a hindrance, limiting work to the morning and

evening when outside temperatures were cooler. Since my mom doesn't like air conditioning, much of

the research was performed while furiously sweating over a keyboard. The want to escape the brutal

heat might have ended up being the biggest immediate motivator.

Although computer science is not entirely composed of math, it has its roots in the mathematics

of computation, and that carries into the modern discipline. I learned more mathematics in learning the

background computer science theory for the research than in preparing for and conducting the actual

research. I am not, and have never been a strong student in math and was relieved to find that the math

required for most of the programming I would be doing was nothing too extreme.

The paradigms and methods of thinking associated with mathematics are often more important

than applied math. Knowing how to find the imaginary roots of a complex equation is important in

certain fields, but for most people just knowing how to process information and think algorithmically

proves to be more practical. The amount applied math used while programming varies from project to

project. Just as in mathematics, programming requires one to think a few steps in advance to be able to

solve a problem. In more complex and higher level math, solutions may not be entirely linear, which

makes it important to think ahead a few steps. Both math and programming are open ended exercises,

requiring forethought before execution. In that respect, studying math is beneficial even if it is not

one's primary focus. Examining the work of great mathematicians is akin to examining the work of a

brilliant chemist, writer or athlete. Programming and the research process made math more alive for

me because I saw the mathematical process at work in areas of greater interest to me. After I started

programming, both my aptitude for and grades in math improved.

Although I had experience programming before starting the project, I was not familiar with low

level and operating system programming, the areas in which most of the programming work for the

project was based. Before beginning to write code of my own, I first tried to acclimate myself with the

existing YAFFS code base, which I would be modifying.

Hashing is the process of reducing data to a small number. It’s used for several different things

in computer science, two of the most common (both of which are implemented in YAFFS) are error

correction and data structures. Because the data stored on flash memory can corrode, a hash called an

error correcting code (ECC) is stored by YAFFS. Using the ECC, the file system can detect and correct

small errors in data. Certain data structures (variables which are organized to enhance their function)

make use of hashes. One such structure, the hash table, was directly used in this study. The added

buffer was constructed using a hash table, which allowed data to be quickly stored and retrieved. A

hash table takes a hash of the data that is to be stored and uses that hash to organize the data within a

list. Hashes make both of these applications possible by allowing the computer to process data more

quickly by processing less of it.

Numbers are represented using different bases. Most numbers we see are base 10, they have 10

possible coefficients (0-9) per digit. When numbers are represented in different bases, the principal is

the same, just applied differently. When we're taught arithmetic, teachers often have us break the

numbers into different places, like the one's place, the ten's place etc. These places are really the base

of the number raised to a certain exponent, increasing with the length of the number. For example, a 3

digit number in base 10 has three places, (reading from left to right, left being largest) 102, 101, 100, or

100, 10 and 1. To construct a number from these bases, we use the values 0-9 as the coefficients for the

digits. So the base 10 number 738 would be (7 * 102) + (3 * 101) + (8 * 100) or 700 + 30 + 8 = 738.

Since we deal with base 10 numbers every day, and are used to looking at them, we don't actually

multiply out everything to understand what the value of a number is; base 10 appears “natural” to us,

maybe because we count on 10 fingers. However, even though base 10 numbers are convenient for us,

they are inconvenient for computers to process.

Computers are essentially large arrays of transistors, or switches. When a computer

manipulates or processes data it is, at the most basic level, manipulating tiny switches, activated by

electrical impulses. This is true when a computer sends an email, plays a song or performs any

operation. These operations happen very quickly, by many transistors, which allow computers to

perform higher level tasks and be useful to society. Since computers are composed of switches with

two states (on and off), it is efficient for them to represent numbers using two states as well, by

representing them in base 2 or binary.

Binary numbers work the same way base 10 numbers work, except the available coefficients are

either 0 or 1. The two possible coefficients represent the two states of a switch, with zero representing

off and 1 representing on (think of the symbol used to denote on and off on some switches, the 1

symbol is on and the 0 symbol is off). The process of constructing a number in binary form is the

same as it is for base 10 numbers. For example, the number 23 (base 10) is 10111 in binary, or (1 * 24)

+ (0 * 23) + (1 * 22) + (1 * 21) + (1 * 20) or 16 + 0 + 4 + 2 + 1 = 23. Each binary digit is called a bit and

8 bits are called a byte.

Binary isn't just useful for computers, we can use it to count to 31 on only one hand. On your

right hand, extend all five fingers and point your palm towards your face. Starting from your righter-

most finger (the thumb), assign each finger a value starting with 20, increasing the exponent by one for

each finger, (the pinkie representing 24 or 16 and the thumb representing 20 or 1). Try writing the value

for each finger on the finger to help you remember at first: 16 (pinkie), 8, 4, 2, 1 (thumb). If a finger is

extended, it indicates that that place has a value of 1, the bit is activated, if it is lowered, the bit is off

and its value is zero. Now bring all your fingers down, like a fist, to denote zero. To count to 1, raise

your thumb; for two, lower the thumb and raise the index finger; and, for three raise the thumb while

leaving the index finger extended. Add the values of all extended fingers to find the total sum shown

on your hand. If you keep continuing in this pattern you can reach 31 on just one hand.

Although binary is the most efficient form for computers, it is difficult for humans to quickly

parse. That's why yet another base is used when dealing with computers, called hexadecimal or base

16 (hexa = 6, dec = 10). Many things with computers are powers of two, like the values of bits, and 16

is a power of 2 as well. Since each digit of a binary number holds a smaller value, they are often longer

than numbers represented in higher bases. Although hexadecimal numbers are not as easy for humans

to deal with as base 10 numbers are, it is still easier to look at a short hexadecimal number than a long

binary number. Hexadecimal digits have possible coefficients ranging from 0 to 15. The letters A

through F represent the numbers from 10 to 15 (if letters weren't used, there could be more than one

digit per place which would make things even more confusing). To differentiate hexadecimal numbers

from decimal or other numbers, hexadecimals are often prefixed with either $ or 0x. For example the

number 4F in hexadecimal is 79 in decimal: (4 * 161) + (15 * 160) or (4* 16) + (15 * 1) = 79.

Bitwise operations are logical operations performed on a number or variable that manipulate

that variable at the bit level. Bitwise operations mimic the structure of a computer's processor. In a

processor, transistors are arranged to form logic gates, pathways where the output (still 1 or 0) depends

on the input. For example, let's compare the binary numbers 110 and 100 using the bitwise OR

operation. The OR operation sets the result to true (1) if one or both of the inputs are set to true and

false (0) when both inputs are false. To compare those two numbers, corresponding digits are

compared with the OR operation: 110 OR 100 is (1 OR 1), (1 OR 0), (0 OR 0), resulting in 110.

Bitwise operations are very useful for low level data manipulation. On some processors it is also faster

to use bitwise operations to multiply or divide rather than using the arithmetic operators. YAFFS

makes extensive use of bitwise operations, partially in part to communicate with flash hardware at a

low level.

The most crucial part of research (or anything really) is persistence. It took two hot summers

filled with frustration to even collect data – data that showed the project hadn’t worked as expected. At

first it was disappointing to learn that all that work didn’t even lead to a slight improvement, but just

because the hypothesis wasn’t proved true doesn’t mean that a project is worthless. Just as much can

be inferred from failure as from success. Confidence and persistence are all you need to succeed.

