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1.1 A little bit about my project

The project introduces the TopicWeb, a system for improved similarity measure-

ment between two textual documents (news articles, emails, etc). It consists of

an interconnected web of documents, where a connection between two docu-

ments specifies the strength of the similarity between the topics of those docu-

ments. A standard method of calculating similarity between two documents is

improved upon by examining not only the two documents themselves, but also

their neighbors in the TopicWeb. This method effectively differentiates between

documents with topics that may be similar sounding to a computer - like ”heart

surgery” and ”Valentine’s day heart” - but are fundamentally different.
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1.2 How did I get the idea for my research?

To find the right topic for a research project, one must strike the right balance

between not hesitating to jump into a particular topic, and being open to new

ideas if that topic doesn’t work out. Make a list of all the fields that would be

exciting for you to do research in and try to find specific problems to be solved

in each field. My list ranged from face recognition to automatic summarization

to artificially intelligent control systems for spacecraft. It’s important not to feel

stuck with a certain field because you’ve already done weeks or even months of

searching for a topic within that field, and starting anew would make you fall be-

hind. If nothing interesting or feasible comes up, then try switching your topic.

However, don’t feel discouraged if you don’t initially understand the material

you read - you’ll have plenty of time to understand it if you eventually choose

the topic. The main motivation should be whether something is interesting and

exciting to you.

I eventually picked the topic of automatic summarization of documents,

which involves creating a shortened version of a document by analyzing the most

important topics, or themes, in the document. The more I read about the field,

the more interesting and feasible it seemed. Eventually, I got interested more

specifically in the identification of topics in a document and the measurement of

how topically related two documents are. At the beginning of last summer, I set

out to try to improve one of the standard methods of measuring such similarity.
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1.3 Where and with whom did I do the research?

The research was done during a summer internship at Morgan Stanley, in the

Information Technology department, where I got permission to work on my

project independently. I decided I would implement a standard method for

document similarity measurement (the Vector Space Model, described later on),

see what was wrong with it, and try to improve it. My mentor — although he

was not a traditional research mentor, such as a scientist or an expert in the

field — helped me narrow down my topic and get my summer internship. I

did not have to learn much math for the project — I was already familiar with

linear algebra and graph theory. But in retrospect, having more knowledge of

math and algorithms would’ve helped me create a more successful model.

1.4 How the research changed me

The research definitely made me a more confident problem solver because I

managed to wrap my head at least partially around a real problem that does

not have a nice, easy answer. I look back now at how I gained this confidence

last summer. At the outset of solving a problem, a finding a solution, or even

coming up with an idea, seemed like an insurmountable task. By the time I

fully got into the problem however, I was overwhelmed with so many ideas that

I could hardly manage to write them all down. But that is exactly what I

did - I wrote them all down. Knowing that I had all my options before me

freed me to jump in and explore a single idea in sufficient depth and enabled

me to backtrack if I reached a dead end. There was also a certain comfort in
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knowing which theories, methods, or experiments worked at any given point.

This allowed me to take things one step at a time - to add on to the list of ideas

and theories that have been validated, and to form new ideas and theories based

on the previous ones.

For example, I started my project with only the vaguely defined goal of

improving the accuracy of automatic document similarity measurement. By

questioning one aspect of an existing algorithms, I would come up with an al-

ternative, which would invariably have its own deficiencies, the analysis of which

would often shed new light on the problem. Through this unpredictable and

winding path, I developed a series of algorithm that are simply the conglomera-

tion of all the individual ideas that evolved out of this process and made logical

sense.

And I sincerely hope that by the time you finish reading this article it mostly

makes sense, and even sparks your interest enough to try to improve upon a

project that I can personally say has many deficiencies.

2

2.1 Introduction

In an age of information overload on the Internet and in various professional

settings, it is not unusual for someone to spend valuable time sifting through

useless data. This is a major problem especially in large corporations, where

intranets contain tens of thousands of files and many people receive hundreds
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or even thousands of e-mails a day. The process of manually determining what

is important and what is not not only wastes time that could be better spent,

but also might result in human error, whereby important data could go unread.

This situation calls for automation of a method that provides increased ac-

curacy in identifying the topic of a document — a textual pice of data like an

email or an article — and in calculating its similarity to other documents.

I will first describe a standard method for calculating such similarities and

then describe what I have done to try to improve upon it.

2.2 Vector Space Model for document similarity measure-

ment

So how do we calculate how similar two documents are? One of the classic

ways to do this uses what is called the Vector Space Model, as developed by

Salton, Wong, and Yang in their paper “A Vector Space Model for Automatic

Indexing.”

2.2.1 A Cloud of Points

To understand the vector space model, imagine a cloud of objects in space with

certain defining characteristics. For now, let those defining characteristics be

the x-coordinate, the y-coordinate, and the z-coordinate of each object. Thus,

the objects are drawn as points in relation to the x, y and z axes.

If we are given one of these points, how do we find the “closest” point? This

depends on the definition of closeness. For now, let the closeness be defined as
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the distance between the two points. Thus, in order to find the closest point,

we simply compute the distance from our given point to each other point and

take the point with the shortest distance.

Now, let’s define another measure of closeness. First, however, we have to

make a minor change. Each of our points has a certain distance from the origin,

and this distance is different for every point. Suppose we want to make this

distance the same for all points — say a distance of 1. We can do that by

taking the line connecting each point to the origin, and moving the point along

that line until the distance is 1. If we do this for every point, our points will lie

on the surface of a sphere. Now, we can define a new measure of closeness. For

any two points, we can take the lines from the origin to each point and measure

the angle between the two lines. The smaller the angle, the closer the two points

are.

This latter method will prove more useful.

2.2.2 So what does this have to do with documents?

It turns out extending this abstract cloud model to make it compare documents

to each other isn’t too difficult. The characteristics of each object are just

coordinates that place it somewhere in physical space — the space that we

inhabit.

What if we had a set of four characteristics for each object? And what

if we called them weird names like door, computer, bottle, and poster? We

can define an object in this fictitious 4-dimensional space by assigning to it

6



numerical values for door, computer, bottle and poster, just like we placed an

object in 3-dimensional space by assigning to it values for x, y and z. Of course,

we can no longer visualize something that exists in four dimensions, but for our

purpose, we don’t need to visualize it.

Now, we are ready to extend this model to the world of documents. To do

that, we need to find out just what characteristics define a document. Perhaps

the most natural answer is to go through the documents and count how many

times each word appears.

The first instinct one might have is to rank the words in descending or-

der according to how often they occur. Those at the top should seemingly be

most important and most representative of the document. For example, the

Wikipedia article about palm trees should have many occurrences of “palm,”

“tree,” “leaves,” etc. But what about words like “the” and “a”? These words

appear very often but they don’t tell us anything special about a specific doc-

ument. Why not? Because they are present in abundance in most other doc-

uments written in English and thus, they do not help us to differentiate one

document from another.

Keeping these things in mind, we need to find a way to assign a value to

each word in each document that measures that word’s importance, or weight.

Later on, we’ll see how we can use all the weights in a document as the set of

characteristics that place the document somewhere in multidimensional space,

but first we need to see how to calculate those weights.
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2.3 Computing weights

Now we are ready to compute the weights of all the words in a document.

First, we take all the words in a document and use an algorithm to strip

their suffixes, plurals, etc, if they have any. The words “program,” “programs,”

and “programming” all give essentially the same meaning — that the document

is about something related to programs and programming. Then, we count how

many of each word there are in the document. For each word, we take the

number of times it occurs and divide it by the total number of words — this is

called term frequency.

Next, we need to take into consideration the fact that a document is part

of a collection of documents. In the previous section, I mentioned that words

like “the” and “a” are meaningless because they appear in pretty much every

English document and fail to differentiate one document from another. This

issue of being able to differentiate between documents requires the existence of

a collection of documents between which we can differentiate.

So how would we ensure that the weights for such meaningless words are in

fact low, the way they should be? The most common way is, for each word,

to count the number of documents in the collection that it appears in at least

once. This value is called the document frequency. If this number is high, it can

be used to offset the term frequency to a lower value, which is what we want.

We can define the term frequency and the document frequency more formally

now and finally come up with a formula to calculate weights.
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The term frequency of term ti is given by tfi = ni

/ m∑
k=1

nk, where ni repre-

sents the number of occurrences of term i in the document, and m is the number

distinct, or different, words in the document.

The document frequency of term ti is given by dfi = |{d : d 3 ti}|/|D|, where

|{d : d 3 ti}| is the size of the set of all documents that contain term ti and |D|

is the size of the set of all documents.

In our case, it is more useful to define the inverse document frequency, which

is idfi = log 1
dfi

= log[|D|/|{d : d 3 ti}|]

We can combine the term frequency and the inverse document frequency as

follows to give the weight of term ti in the document d:

wti,d = (tf)(idf)

2.4 Creating representations of documents based on their

weights

In this section, I will describe how we can use the weights of the words in each

document to create a mathematical representation of that document. When we

looked at points in three-dimensional space, they each had the exact same set of

characteristics consisting of an x-coordinate, a y-coordinate, and a z-coordinate.

Some points might lie on the xy plane (no z component) but we still give them

a z value of 0 because we need the same set of characteristics and that includes

having a z-coordinate.

Similarly, we need the exact same set of characteristics for each document
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in a collection of documents. As you have probably already guessed, these

characteristics are the words in the documents. However, not all documents

have the same words, and we need a set of characteristics that applies to all the

documents. To do that, we simply take the set of all distinct words that appear

in the entire collection of documents. This is an ordered set of characteristics,

the same way that (x, y, z) is an ordered set of characteristics. An ordered set of

n characteristics that each have numerical values can be thought of as a vector

in n-dimensional space.

Now, for each document, each member of a set of characteristics needs to be

assigned a value. Since each characteristic is a word, and we already know the

weight of each word in each document, we do one of two things. If that word is

in the document, we just assign it the value of the weight of that word in the

document. If the word is not in the document, we assign it a value of 0.

Now we can represent all the documents in our collections as vectors in a

multidimensional space.

2.5 Computing similarities

Earlier, we discussed two methods of calculating similarity between objects in

three-dimensional space — using the distance formula on the two points in space,

or making their distance to the origin equal and calculating the angle between

them. These methods work exactly the same way in 4-dimensional space, in

5-dimensional space, or in a space of any dimension, because we can always find

the distance between two points, regardless of their dimension, and an angle
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always exists between two vectors regardless of their dimension.

I also mentioned earlier that the angle method was more useful for our

purpose and I will now introduce it formally and explain it in more detail.

First, we need to make all the vectors have length 1. We can do this to a

vector by normalizing it, or dividing it by its magnitude.

Second, we need to find some measure of the similarity involving the angle

between the two vectors. There is a very convenient operation that one can do

to two vectors that gives us an expression that involves the angle between the

two vectors. The operation is called the dot product, defined as

u · v = u1v1 + u2v2 + . . . + unvn,

where u and v are n dimensional vectors and ui, vi are the ith components

of vectors u and v, respectively.

It turns out that

u · v = |u||v| cos θ(u,v),

where θ(u,v) is the angle between vectors u and v, and |u| is the magnitude

of vector u.

Since the vectors are normalized, their magnitudes are equal to 1. Thus,

if the dot product is 1, the angle between the vectors must be 0, indicating

maximum similarity. If the dot product is 0, then the angle is 90 degrees,

indicating no similarity.

The reason the vectors are normalized is that the vectors of long documents

will have large magnitudes simply because they contain more words. We can

11



see from the above formulas that vector magnitude will affect similarity. Since

length has nothing to do with the meaning, or topic of an article, we want to

not consider it and we do this by making the magnitudes of all vectors 1.

In the next few sections, I will talk about the work that I have done to try

to improve the Vector Space Model.

2.6 Motivation for TopicWeb

Although dot product similarity is a very clever and useful technique, it has a

characteristic flaw, which should become clear with the following example.

Consider the vectors of two documents, one about the city of Phoenix, and

another about the phoenix as a mythical bird. Both documents will likely

contain the term “phoenix” many times and the tf-idf weight of “phoenix”

will be very high in both. Through observation, the dot product similarity in

such cases is almost as high, and sometimes higher than the similarity between

documents of the same topic (ex. two documents about phoenix mythology or

two documents about Phoenix, Arizona). Thus, it is necessary to develop a

better similarity metric that involves an improved representation of the actual

topic of each document, one that will reduce such ambiguity.

2.7 Topical similarity

In the previous section, we saw that most of the similarity came from one promi-

nent word that the two documents had in common. Thus, a logical approach is

to reward with a higher similarity those pairs of documents that have a higher
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number of highly weighted terms in common. An important question is, how

highly weighted is high enough? Another important question is, how much

do we increase the similarity based on how many of these terms there are in

common?

Let’s call the set of relevant terms the set of terms in the document that

have the N highest weights. Note that several terms can have the same weight,

resulting in the set of relevant terms being larger than N , and that the document

may not have N different terms, resulting in a set of relevant terms being smaller

than N .

We can compute the number of matches between the sets of relevant terms

of two documents, or in other words, the size of the intersection set. Next,

since our dot product similarity ranges from 0 to 1, it makes sense to convert

the number of matches to a value from 0 to 1 as well and multiply the two

values. To do this, we can calculate the size of the intersection of the two sets

of relevant terms and divide by the average size of the two sets. This value will

have a minimum of 0 when there are no matches, and a maximum of 1 when

the sets are of the same size and contain the same terms. Let’s call this value

the term match density ρ, given by

ρ(Ra, Rb) = 2 |Ra∩Rb|
|Ra|+|Rb|

where Ra and Rb are the sets of relevant terms of documents a and b, re-

spectively. Using ρ, we can define the topical similarity σ which we get by

multiplying the dot product similarity by the term match density. This is given

by
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σ(a, b) = ρ(Ra, Rb)(va · vb)

where va and vb are the vectors of documents a and b, respectively.

2.8 TopicWeb model

We can use dot product similarity and topical similarity to create a graph of

documents. A graph is a set of nodes, or objects that have edges connecting

some or all of the objects to each other. We want to represent the relationships

of documents to each other and such a web of relationships is fitting.

We say that an edge exists for all pairs of documents whose dot product

similarity exceeds a certain threshold τ . Topical similarity is then used to define

the strength of the relationship between the topics of the two documents.

2.9 So what exactly can we do with the TopicWeb?: Term

Diffusion algorithms

I have come up with an algorithm to analyze the TopicWeb in order to allow

a document to be influenced by neighboring documents. This influence is in

the form of the “diffusion” of terms across documents that are closely linked in

the TopicWeb. Consider a group of close friends, and a specific person in the

group. You could ask that person about their interests, but the answer could be

unreliable — the person could leave things out, or talk about things they’re not

that interested in but perhaps happened to pop into their heads. If the group

of friends is very close and has very similar interests, you could also ask that
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person’s friends what their own interests are. This is exactly what we’re going

to do with documents.

Given a document u and its relevant term set Ru, its neighbors n1, n2,

n3,...,nm, and their respective relevant term sets Rn1 , Rn2 , Rn3 ,...,Rnm :

1. Let Di ⊂ Ri. Di is the set of terms from a neighboring document that

are “allowed” to diffuse into the central document.

2. For each relevant term set Rni
and for each term tj in Dni

: (a) calculate

the following value: the weight of tj in document ni times the square of

the topical similarity (inverse of the edge length in the TopicWeb) σ times

a constant κ ≥ 1 and (b) add this value to the weight of tj in u. κ will

be used as a variable to regulate the amount of diffusion, or the extent to

which neighboring documents can influence the central document.

3. Normalize the vector of document u to get a unit vector direction.

This algorithm changes the components of the document vector and results

in a new unit vector representation of the document’s topic. The unit vectors

that result from this algorithm can be treated in the same way as individual

document vectors, and compared to each other using dot product similarity.

Compared to the original vectors of the documents, their modified vectors

should be closer together if the documents are of the same topic, and farther

away if the documents are of different topics.

The TopicWeb model itself (without the term diffusion algorithms) is very

simple yet fundamental because it represents relationships in a graph. There are
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probably many things that one could do with it, perhaps by using techniques

that are commonly used with graphs, or something completely different. Admit-

tedly, I haven’t thought much about that. I just took one of the first ideas I had

for a way to use this model and ran with it. I challenge you, the reader, to come

up with some other useful algorithm to handle and analyze these relationships.

In the context of the algorithmic description, we will define two different

types of diffusion. Simple Term Diffusion is the specific case where Di = Ri ∀

i, and Selective Term Diffusion, is the case where Di is equal to Ri minus the

term with the highest weight in Ri.

But first, I’ll talk about the types of documents that I tested this on. The

document collection consisted of a subset of the Reuters 21578 Document Corpus

and a smaller, manually added test collection. 5081 articles with character count

exceeding 1000 were chosen from approximately 13,000 articles in the Reuters

Corpus. The large size of the collection is important to guarantee statistically

sound term weights over a fairly heterogeneous spectrum of topics.

Fifteen carefully selected documents were manually added to the original

5081 — 10 articles about the mythology of the phoenix, and 5 about Phoenix,

Arizona. These will serve as the case study for the results of experimentation

with the TopicWeb. This set of documents will be referred to as the Phoenix

Corpus.

The results and their explanations are in Figures 1 and 2.

As you can see, Simple Term Diffusion doesn’t do a great job at differenti-

ating between documents of different topics, while Selective Term Diffusion is
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Figure 1: Left: Simple Diffusion Dot Product Similarity for documents of the same topic.
Right: Simple Diffusion Dot Product Similarity for documents of different topics with one or
more ambiguous words that cause deceptively high similarities. The data was collected from
tests on the Phoenix Corpus.

more successful.

Since the term “phoenix” is arguably the most common term in the entire

Phoenix Corpus, its value in any document vector will increase in proportion

with increased term diffusion. Since this applies to documents from both cate-

gories of Phoenix Corpus articles, the term “phoenix” will quickly become the

dominant term in almost all document vectors, thus increasing the dot product

for almost all pairs of documents being compared, regardless of whether they

are similar or dissimilar. In contrast, Selective Term Diffusion The limits the

dominance of ambiguous terms like ”phoenix” and disables them from under-

going diffusion. By not allowing such terms to diffuse into a given document

vector, their weights in that vector will drop, while other terms that do diffuse

will increase in weight. When a single term no longer dominates, other terms

that are characteristic of a document’s topic gain a newfound importance.
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Figure 2: Left: Selective Diffusion Dot Product Similarity for documents of the same topic.
Right: Selective Diffusion Dot Product Similarity for documents of different topics with one
or more ambiguous words that cause deceptively high similarities. Selective Diffusion clearly
performs better than Simple Diffusion in differentiating between documents of different topics.
The data was collected from tests on the Phoenix Corpus.

2.10 Hierarchical clustering: Dot Product Similarity vs.

Selective Diffusion Dot Product Similarity

Hierarchical clustering is a method used to organize data in a hierarchy using a

binary tree. The basic operation for hierarchical clustering is similarity calcu-

lations — so the better the similarity metric, the better the clustering should

be1. Figure 3 shows the results of performing hierarchical clustering on the

Phoenix Corpus with Selective Diffusion Dot Product Similarity and with just

Dot Product Similarity. Selective Diffusion Dot Product Similarity is clearly

the better similarity metric for this purpose.

1To find out how this is done in more detail, visit

http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial html/AppletH.html.
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Figure 3: The documents about phoenix mythology (blue) and Phoenix, Arizona (red), after
undergoing hierarchical clustering. The white, numbered ovals are categories, which contain
at least two documents. Left: Hierarchical Clustering with Selective Diffusion Dot Product
Similarity: The results show a clear hierarchical organization of topics starting from the top-
most node. This results in logical visual separation of nodes belonging to different topics and
connectedness of nodes belonging to the same topic. This hierarchical tree is easy to navigate
and useful in searching through the collection of documents. Right: Hierarchical Clustering
with Dot Product Similarity: Dot product similarity is generally a poor similarity metric for
hierarchical clustering, as these results show. There is a lack of appropriate organization, most
notably a lack of clear separation of nodes belonging to different topics as well as undesirable
connectedness of nodes belonging to different topics. Because of these flaws, this tree is
difficult to navigate and not very useful for searching through the collection of documents.
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2.11 Conclusion

In this paper, I have proposed the TopicWeb Model for document similarity

measurement and categorization. The initial problem that I aimed to resolve

with this model was the problem of topical ambiguity in the traditional Vector

Space Model. The goal of the experiments performed was to create a similarity

metric that differentiates between the two different categories of topics that

share an ambiguous term. Our case study was the Phoenix Corpus, where

we examined “phoenix” related articles. Two different methods of utilizing

inter-document relationships in the TopicWeb were presented - Simple Term

Diffusion and Selective Term Diffusion. Selective Term Diffusion combined with

dot product similarity proved more useful than dot product similarity alone in

correctly differentiating between documents, and in organizing them by topic

through hierarchical clustering.
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