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1 Context and Inspiration

Math can be an intimidating field. To work on some problems, one must know decades or

centuries of background before one can even understand the question. However, what tends

to get lost in all of that is that math can be fun, even for the relatively uninitiated. There

are problems in mathematics that are discrete (essentially, self-contained) and with some

combination of background research, mathematical thought, and appropriate mentoring,

they are easily within reach of the high school student.

During my sophomore and junior years in high school, I did work in discrete mathematics,

outside the standard (albeit accelerated) math curriculum. I never had an official mentor;

mostly I worked alone, but I was always able to enlist the aid of my teachers and some

college professors whom I contacted, as well as similarly minded friends (both in high school

with me and also some college students) who could review my work.

In the summer of 2007, I was privileged to have the opportunity to attend the Research

Science Institute (RSI) at MIT. Every year at RSI, 80 rising high school seniors are brought

in from all around the world to conduct research for six weeks in the Boston area. They

are each paired with mentors in the area who work in the student’s fields or related fields.

The math students at RSI (myself among them) always work with graduate students from

Harvard or MIT.

I was paired with Amanda Redlich, a combinatorics graduate student at MIT who had

attended the University of Chicago as an undergraduate. Because of my prior work in

combinatorial game theory, she gave me a few papers to read on rotor-routing and chip-

firing, with the hopes that I would be able to construct and solve a game based on one or

the other.

An early foray into chip-firing came to an interesting conclusion. I was counting the firings

required for a maximized graph with 2k vertices and the source and the target vertices placed
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at opposite ends to stabilize. (I had begun this with the intention of making a game of it,

but I soon realized that chip-firing was abelian (commutative) and therefore the game I was

making was trivial.) However, each of the graphs took (k
2
)2 firings to stabilize, which was

intriguing.

I gradually collected more information, doing most of my work either in the math common

room at MIT, my own room in the dorm that RSI was housed in, or wherever I happened

to sit down and have a few minutes. Eventually the pattern generalized; given a maximized

cycle of size n and target and source vertices at distance s from one another, it will take

ns− s2 firings to stabilize. With another day or two of work, I proved this.

After cycles, the obvious next place to go was trees. After that, I played with theta

graphs, unfortunately to no avail. Amanda remembered a problem she had heard Dr. James

Tanton talk about (the candy-passing game), and thought it resembled chip-firing. It took

the remainder of the program, but I finally broke what was up until then the hardest result

in my paper: showing that, in a candy-passing game with c ≥ 3n, the configuration would

eventually settle into a fixed state. (Later I extended this into c ≥ 3n− 2.)

The weeks went by. I finished my paper and gave my talk, and RSI came to an end.

I returned home, where one day I had a flash of inspiration. I had started contemplating

another problem while I was at RSI-translating my very first result into a proof of the hitting

times between distinct vertices on cycles-but there had been one essential part of the process

that I could not understand.

Until it hit me, and, with the block broken, I knew how to solve the problem. My brother

and his laptop (with Mathematica) were around, and I immediately spent more than a few

hours grinding out, parameter by parameter, a three-part sum function that described the

behavior of the system. Finally I had it right; I wrote it up, realized I had it wrong, fixed

it, and wrote it up again.

With that, my paper was more or less in the final form that I used for all of the year’s
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science fairs: not only the Intel Science Talent Search, but also the Siemens Competition in

Math, Science, and Technology, the Junior Science and Humanities Symposium and our local

science fair, as well as the Intel International Science and Engineering Fair. Edits followed,

but they were mostly fairly minor. I submitted one portion of my research for publication in

the Pi Mu Epsilon Journal; to my great joy, it was accepted [5]. (It is additionally available

as arXiv 0709.2156.)

My Intel STS project, like all of my math work, was discrete; I read several papers’ worth

of background, but that was it, and not all of those eventually turned out to be useful. I could

have done exactly as good a project having read only one or two. My work was inductive

and intuitive and elegant and mostly self-contained. I believe that too many good brains are

turned off to math because they never realize that mathematics can be elegant, interesting,

or deep. Everyone, before he or she gives up on math, should crack open something outside

of the high school norm. High school math can require a lot of rote learning–which is fine,

insofar as it teaches the mechanics of and discipline for computation. But we cannot forget

how much more–how much beauty, how much power, how much uniqueness–remains to be

found in mathematics.

2 Introduction

2.1 Graph Theory

A graph G consists of a set V (G) of vertices and a set E(G) of edges connecting pairs of

vertices. A vertex v1 ∈ V (G) which is connected by an edge to another vertex v2 ∈ V (G)

is said to neighbor or be adjacent to v2 [1]. The degree (deg v) of a vertex v ∈ V (G) is the

number of neighbors of vertex v.

A path from v0 to vn in G is an ordered set {v0, . . . , vi, . . . , vn} of adjacent vertices vi in

V (G) such that vi 6= vj for every i 6= j. The number of edges in the shortest path between
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two vertices is called the distance between those vertices. A graph is connected if, for any

two vertices v, v′ ∈ V (G), there exists a path from v to v′.

We will define further graph-theoretic terminology as needed. A complete introduction

to graph theory can be found in [1].

2.2 Random walks

The random walk is a commonly studied problem in which a bug is placed on a lattice or

graph and allowed to wander at random. On a number line (or integer lattice of dimension

1), the probability that the bug will at some point return to its starting point is 1. On

increasingly complex lattices and graphs, however, this probability decreases [2].

Generally, random walks on graphs are approximated by computing the expected hitting

time, or probable number of random moves required to go from one vertex to another. Al-

though random walks are useful in mathematics and computer science, probabilistic systems

do not offer sufficient precision for some applications. There are, however, several emerging

methods of deterministically simulating random walks which can be used to more efficiently

compute hitting times [4, 6].

2.3 Chip-firing

One such deterministic simulation uses a process known as chip-firing. In chip-firing, we start

with an arbitrary finite graph G. At each vertex v ∈ V (G) we place an arbitrary number

of chips gv. If gv > (deg v), then v fires, distributing evenly among its neighboring vertices

the maximum number of chips that can be so distributed [6]. In other words, v distributes

h chips to each neighboring vertex, where h is the greatest integer such that h · (deg v) ≤ gv.

Chip-firing settings often designate target vertices, which “absorb” chips and so never

fire. Because they will never fire, we may treat such vertices as having zero chips, regardless
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of how many they have actually received from their neighbors. A chip-firing configuration

that has no vertex capable of firing is called stable. A stable configuration such that one

more chip placed at any non-target vertex will make that vertex fire is said to be maximized ;

in other words, a maximized graph is a graph such that each vertex v ∈ V (G) has (deg v−1)

chips [6].

It is important to note that the chip-firing process is commutative (see [3, 6]). This means

that a configuration’s end-behavior does not vary with the order in which vertices fire. (By

end-behavior, we mean whether the configuration will ever stabilize, and, if it stabilizes, the

arrangement of chips among the vertices.) Also, vertices may be fired simultaneously.

Past research has focused on properties of chip-firing, as well as the ending configurations

produced by certain starting configurations (see [3, 4, 6, 7]). In this paper we develop a

formula to count the number of firings required to stabilize maximized cycles. We present

applications of this idea to hitting time analysis. (In the full STS paper, which there is

unfortunately insufficient room to present here, we additionally: develop a formula to count

the number of firings required to stabilize arbitrary maximized trees after the addition of

one chip; examine a special chip-firing game called the “candy-passing game,” and show

that when the number of chips is at least 3n − 2, where n is the number of vertices, the

configuration will eventually become fixed; and give a conjecture extending this result and

discuss this result’s application to the PageRank algorithm.)

3 Firings to Stabilize Cycles

In this section, we count the number of firings required to stabilize maximized cycles with a

single target vertex after a single additional chip is placed at a given non-target vertex.

We examine n-cycles, connected graphs G having n vertices such that each v ∈ V (G) has

exactly two neighbors. An example of a maximized 6-cycle with one additional chip and a
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single target vertex is given in Figure 1:
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Figure 1: The number of chips on each vertex in a starting configuration of a 6-cycle with
s = 2 in Theorem 3.1. The vertex with zero chips is the target vertex; the vertex with two
chips is vs.

Theorem 3.1. Suppose we have a maximized n-cycle with one target vertex v0. We place

an additional chip at a vertex vs at distance s from v0. The number of firings required to

stabilize the configuration is

ns− s2. (1)

Proof. We number the vertices consecutively, v0, v1, v2, . . . , vs, . . . , vk, . . . , vn−1. (For an ex-

ample of such a labeling, see Figure 2.) We color the additional chip placed at vs blue.
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Figure 2: A sample labeling of a 6-cycle.

Because chip-firing is commutative, the number of firings required for stabilization using

a specific ordering of firings is the same as for any other ordering. Therefore, we may order
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the firings without changing the number of firings required for stabilization. We assign the

ordering:

• The vertex containing the blue chip is fired if and only if it is the only vertex on the

graph that may be fired.

• When the vertex vk containing the blue chip fires, the blue chip moves to v(k+1) mod n.

We call the period of time beginning with one firing of the vertex containing the blue

chip and ending just before the next firing of the vertex containing the blue chip a round of

firing.

Claim 3.2. At the end of any round of firing t, there is exactly one empty vertex, located at

vt.

Proof. We show the claim by induction, starting at round t = 0. When the blue chip is first

placed, its vertex vs is the only vertex capable of firing. Once it fires, vs, which began with

two chips and fires two chips, is empty, and the adjacent vertices are both capable of firing.

Now there is exactly one vertex not containing the blue chip which is capable of firing, vs−1;

it fires. Now vs−2 can and does fire, adding a chip to vs−1 and vs−3 and becoming empty

itself. If we continue these firings, eventually v2 will be empty and v1 will fire, leaving v1

empty and only vs+1 capable of firing, meaning that we have started a new round of firing.

Now the blue chip is at vs+1 = vs+t and v1 is empty.

It follows from an analogous argument that at the beginning of any round t the vertex

containing the blue chip is vs+t and the empty vertex is at vt.

The vertex containing the blue chip fires once in each round of firings. The blue chip

moves n− s times, or once for every vertex it passes over on its way to the target vertex. In

each round of firing, every vertex between the vertex containing the blue chip and the empty
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vertex fires once. Since the empty vertex follows the blue chip at distance s, there are s

firings in each round, which means that our total number of firings is s(n− s) = ns− s2.

The following corollary is implied by the proof of Theorem 3.1.

Corollary 3.3. Once the cycle in Theorem 3.1 has become stable, each non-target vertex

should contain a single chip, with the exception of vn−s, which will be empty.

4 Hitting Times on Cycles

The elementary excitation-relaxation operation is defined as follows: given a graph G with

one target vertex v0, place a chip at a source vertex vs and fire until the graph stabilizes. If

we perform the elementary excitation-relaxation operation m times on the same vertex vs of

a maximized cycle or tree, the graph will eventually return to its maximized state. Suppose

that it takes m elementary excitation-relaxation operations for the graph to return to its

maximized state and that M chip-motions (note that we count motions, not firings) occur

over those m elementary excitation-relaxation operations. Then the ratio M
m

is equal to the

hitting time for a random walk from vs to v0 [6]. (The definition of a hitting time is given

in the introduction.)

We denote by i = 0, 1, . . . the index of a given iteration of the elementary excitation-

relaxation operation. A vertex other than v0 that is empty between iterations of the elemen-

tary excitation-relaxation operation is called a break vertex, denoted by vb.

Theorem 4.1. Given an n-cycle, the hitting time from two distinct vertices at distance s

from one another is given by

ns− s2. (2)

Proof. We number the vertices as in Theorem 3.1, declaring a target vertex at v0 and a

source vertex at vs. We first show that the break vertex moves s vertices on every iteration
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of the elementary excitation-relaxation operation. This will allow us to count the number of

iterations of the elementary excitation relaxation operation and, by extension, the number

of firings in each iteration.

Claim 4.2. After iteration i of the elementary excitation-relaxation operation, v(n−si) mod n

is empty.

Proof. We first show the claim when |b − s| < s at the beginning of iteration i of the

excitation-relaxation operation. Since no chips will move past either v0 or vb in the course

of the iteration, we may temporarily identify vb with v0 by collapsing vertices vb, . . . , v1 to

v0; thus, we may consider the graph to be a cycle of size n − b with a single target vertex

for the course of this iteration. If |b − s| < s and b < s, then the distance from vs to the

new v0 during iteration i is s− b. At the beginning of iteration i+1, vb will be at the vertex

vn−(s−b) = vn−s+b. In this case, vb has moved s − b vertices from v0 and skipped over the b

vertices between vb and v0, moving a total of b + s− b = s vertices.

We now show the claim when |b − s| < s and b > s. For the same reasons as above,

we may once again temporarily identify vb with v0 by collapsing vertices vb, . . . , vn−1 to v0.

(Also note that we collapse a different set of vertices. This is simply to avoid collapsing vs

to v0.) This gives us a cycle of size b with one target vertex v0 and on which the distance

from the new target vertex to vs will be b− s. At the beginning of iteration i + 1, then, the

break vertex has moved b− s vertices from v0 to vb−s. We thus find the total distance it has

moved to be b− (b− s) = s.

We now show the claim when |b − s| ≥ s. Consider an iteration of the elementary

excitation-relaxation operation on a cycle of size n′ ≥ 2s. After this iteration, by Corol-

lary 3.3, vn′−s has zero chips. As above, we may temporarily identify vn′−s with v0 by

collapsing vertices vn′−s, . . . , vn−1 to v0, giving us a cycle with n′ − s vertices. We may then

treat the next iteration of the elementary excitation-relaxation operation as the first iteration
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of the elementary excitation-relaxation operation on an (n − s)-cycle, and our induction is

shown.

If vb moves s vertices on every iteration, where s does not divide n, it will move n
gcd(n,s)

times before it reaches its starting point. Thus, there are n
gcd(n,s)

iterations. At the beginning

of the last iteration, the break vertex is at vs, so there are n
gcd(n,s)

− 1 iterations in which the

break vertex is some vertex other than vs.

There are (n−2s)
gcd(n,s)

+1 “outside” iterations o = 0, 1, . . . , (n−2s)
gcd(n,s)

where |b− s| ≥ s. (The one

additional iteration comes from the iteration in which b = 0.) At the beginning of each of

these iterations, the distance from v0 to the source vs is s and the size of the cycle is n − b,

where b = o · gcd(n, s).

There are s
gcd(n,s)

“lesser” iterations l = 1, 2, . . . , (s)
gcd(n,s)

− 1 where |b − s| < s and b < s.

At the beginning of each of these iterations, the distance from v0 to the source vs is s − b

and the size of the cycle is n− b, where b = l · gcd(n, s).

There are s
gcd(n,s)

“greater” iterations g = 1, 2, . . . , (s)
gcd(n,s)

−1 where |b−s| < s and b > s.

At the beginning of each of these iterations, the distance from v0 to the source vs is b − s

and the size of the cycle is b, where b = g · gcd(n, s).
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Therefore, the hitting time is given by

2
n

gcd(n,s)


n−2s

gcd (n,s)∑
o=0

(s(n− o gcd (n, s))− s2)

+

s
gcd (n,s)

−1∑
l=1

((s− l gcd (n, s))(n− l gcd (n, s))− (s− l gcd (n, s))2)

+

s
gcd (n,s)

−1∑
g=1

((g gcd (n, s))(g gcd (n, s) + s) − (g gcd (n, s))2)

 =

2 gcd(n, s)

n

(
−s2(−1 +

s

gcd(n, s)
) + s2(

s− gcd(n, s)

gcd(n, s)
) − s(2s− n)(2s− gcd(n, s) − n)

2 gcd(n, s)

+ sn(−1 +
s

gcd(n, s)
) − sn(s− gcd(n, s))

2 gcd(n, s)
− s2(1 +

−2s + n

gcd(n, s)
+ sn(1 +

−2s + n

gcd(n, s)
)

)
= ns− s2.

5 Conclusion and Future Directions

In this paper, we developed formulae for the number of firings required to stabilize cycles

and for the hitting times between distinct vertices on cycles. In the future, we would also like

to derive formulae to describe the firings required for general undirected or directed graphs

to stabilize. We would also like to do further work on the candy-passing game (the current

work on which is not presented in this paper).
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