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(i) Personal Account 

Astronomy has always captivated me, and after being introduced to the 

constellation Orion at a young age, I marveled at its steadfast loyalty as it returned each 

winter.  The night sky seemed awesome and mystifying, and was so far away from the 

violent actions of humans I saw strewn across televisions, magazines, and newspapers.  I 

began researching and following the patterns of the moon and the night sky, as well as 

lunar and solar eclipses.  I was thrilled when our family got a telescope, enabling me to 

view more closely the objects with which I was enthralled.  At the end of 9
th
 grade, I 

applied for our high school’s science research program, and somewhat naively began 

plunging the depths of the immense field of astronomy.  Upon reading papers in a 

scientific and mathematical language that I did not understand, I realized that I would 

have to teach myself the basic concepts.  I searched websites and books, and purchased a 

beginner’s astronomy textbook.  After looking into the many specific applications of 

astronomy, I decided to study pulsars, largely misunderstood, mind-bogglingly dense, 

light-emitting, collapsed stars.   

It was at first extremely frustrating to plow through the literature on the subject of 

pulsars, which seemed as dense as the pulsars themselves.  However, my curiosity 

trumped my own doubts and the words of those who told me I could not conduct research 

in astronomy due to its inherent difficulty.  I obtained definitions of perplexing terms and 

equations in my reading, and taught myself some basic physics concepts.  Despite having 

taken calculus, I had not taken a class in physics, and I could not have done the work for 

this project on my own.  I received a tremendous amount of help from others, and I 

attribute much of my success to my mentor, Doctor James Lattimer of the State 
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University of New York at Stony Brook, whom I contacted towards the end of my 

sophomore year of high school.  Dr. Lattimer generously gave his time to help me 

formulate a research project in an area of science about which I knew virtually nothing 

and taught me the basics (if they can be called basics) of the advanced mathematics and 

computer programming language necessary to complete my project.  Because of 

encouragement from Dr. Lattimer, I applied for the Simons Summer Research Fellowship 

at Stony Brook, without which I would not have been able to complete my research.  This 

fellowship allowed me to work during the week from nine to five on my project, and 

introduced me to the sometimes tedious and challenging, yet exciting life of a researcher.  

It was a rewarding experience simply to be surrounded by other scientists sharing 

dizzying ideas over Thursday coffee breaks.  I came back from the program with an 

overwhelming abundance of new knowledge, mounds of data to analyze, and an ability to 

write computer programs in a seemingly ancient programming language.  Spending a 

large part of my summer doing scientific research allowed me to accomplish what was 

necessary to write my Intel paper successfully.  

I would not have been able to accomplish anything without the guidance of the 

outstanding science research program offered by my school, and of course my ever-

supportive parents, sisters, and friends.  The Ossining High School Science Research 

Program is unique in that members of the program are more a family than simply a group 

of students and teachers striving to do some research.  My fun, quirky, science research 

teachers and advisors, that praiseworthy powerhouse pair Mr. Angelo Piccirillo and Ms. 

Valerie Holmes, have made my time at high school unforgettable.  They never fail to 

motivate and amaze me every day, and are always there to provide support, like listening 
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to a presentation for the hundredth time, cheering at competitions, or simply helping a 

frantic student de-stress over a cup of coffee in that tiny hole-in-the-wall science research 

room I call home.  They give of themselves relentlessly and tirelessly, as though each and 

every science research student is their own child. 

My advice to fellow student researchers is this: even if your school does not offer 

a science research program, do not let that stop you!  Completing the daunting task of a 

research project is difficult, but is much more rewarding if you surround yourself with 

supportive people, whether it be researchers, parents, teachers, or friends.  Do not be 

afraid to reach out to others for help, because building a great research experience is not 

always about whether or not your project worked.  Probably the most important skill I 

have learned from my time doing scientific research is communication—through 

telephone calls, emails, power points, poster presentations, or face-to-face discussions.  

Especially in mathematics projects, where concepts can be difficult and often purely 

theoretical, it is important to consult the experts even when intimidated.  Obtain feedback 

every step of the way, because different people will offer diverse and valuable comments.  

I have learned to look both a younger classmate, and a college physics professor in the 

eye and say, “I have no idea how to do this. Can you help me?”  Get past your initial 

reluctance, as I did (and sometimes still have to do), and admit to yourself that as only a 

student, it is ok to ask questions, because in the end, you will gain so much more if you 

do. 
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Figure 1. National Radio Astronomy 

Observatory 

(ii) Research Report 

I. Introduction 

A neutron star is one of the densest objects in the universe, containing on average 

about 1.5 solar masses and having a radius of approximately 12 kilometers (Lattimer et 

al., 2004).  For this reason, the neutron star may exhibit unique particle phenomena 

including superfluidity, superconductivity, and hyperon and quark-dominated matter, and 

provides many opportunities to study and test the theories of particle, nuclear, and dense 

matter astrophysics (Manchester et al., 2004).  Despite the many significant advances in 

the field, there is still much that remains unknown regarding neutron stars, including their 

radii and shapes as they rotate (Shapiro et al., 2004).  It is imperative that these properties 

be established before astronomers can use neutron stars to test more complex aspects of 

physics (Webb et al., 2007).   

A neutron star is formed when a massive star undergoes a Type II, or core- 

collapse supernova (Lattimer et al., 2004).  Nucleons within the core collide and rebound, 

sending out a powerful shock wave which expels the outer layers of the star.  The inner 

layers then collapse under the star’s gravity, causing the protons and electrons in the 

inner layer to combine and form neutrons (Manchester et al., 2007).  The star’s rapid 

rotation is generated by angular momentum that is 

conserved in the supernova collapse and can be 

increased at a later time due to mass accreted from a 

companion star.  When a neutron star emits 

electromagnetic radiation that is detectable from Earth, 

it is called a pulsar.  Beams of radiation emitted by two 

“The Lighthouse Effect” 
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opposite “hot spots” on the surface of the pulsar sweep around as it rotates, creating what 

is known as a “lighthouse effect” (Manchester et al., 2007) (Figure 1).  When these 

beams pass in the direction of Earth, they can be detected as a series of pulses.   

The period of resolution or amount of time between each recorded pulse is 

extremely constant, and can vary from about a few milliseconds to approximately a 

second.  For this reason, pulsars are ideal objects for testing theories of neutron stars 

(Manchester et al., 2004).  The pulse patterns, however, are not always simple to interpret 

because they are affected by the non-spherical shapes of highly rotating stars.  An 

understanding of the shapes of rotating neutron stars could better explain pulse patterns 

and the possible ways in which variations of patterns occur (Lattimer et al., 2005).   

If the underlying equation of state (EOS) relating the density and pressure of 

matter were known, the general relativistic equation of stellar structure could be exactly 

solved to determine the rotating neutron star’s size and shape.  The shape determination, 

however, requires a complex numerical evaluation including gravitation and general 

relativity (Zdunik et al., 2004, Haensel et al., 1999).  These equations are too time-

consuming to be used to assess observational data.  An analytical formula, if accurate 

enough, would make these comparisons more straightforward.  Previous research 

(Lattimer et al., 2005) has suggested that a basic formula does exist, but such a formula 

has yet to be tested to determine its accuracy and applicability across a broad range of 

equations of state and rotation rates.   

II. Purpose/Hypothesis 

The purpose of this project is to assess the accuracy of relatively basic structural 

formulae derived from a simplified Newtonian model that relates neutron star spin 
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frequency, mass, polar and equatorial radii, and shape.  We hypothesize that data 

produced by our analytical method will be relatively accurate compared to that of the 

previous studies in assessing shape, but will require some further algebraic manipulation 

to increase accuracy.   

III. Methods  

 3.1 The Roche Model 

The following equations are adapted from the Newtonian Roche model for 

uniformly rotating stars, as outlined in Shapiro, 2004.  The Roche model assumes that the 

star’s gravity is the same as for an object in which the mass is concentrated in its center. 

Three major forces are in action as this celestial body rotates: gravity, which pulls the 

body inward, and pressure gradient and centrifugal forces, which push outward.  These 

forces are in a balance known as hydrostatic equilibrium (Lattimer et al., 2004).  The 

equation of hydrostatic equilibrium of a rotating object in Newtonian gravity is given by: 

   )( cG
p

P
Φ+Φ−∇=

∇
    (1) 

where P and p are the pressure and density of matter, rGMG /−=Φ  is the Newtonian 

gravitational potential assuming a concentration of mass (M) in the center of the star and 

distance from the origin r.  The symbol∇  denotes the gradient operator, which in one 

dimension would simply be
dx

d .  The centrifugal potential is θ222 sin
2

1
pc

rΩ−=Φ , 

whereθ  is the angle measured from the pole of the rotating star and Ω  is the angular 

frequency. When this equation is integrated, one obtains the Bernoulli integral: 

     Hh cG =Φ+Φ+                                    (2) 
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where h is the thermodynamic quantity known as the enthalpy at zero temperature, and H 

is the constant of integration.  Formally, ∫
∆

=
p

P
h  and is defined to be zero at the star’s 

surface. When this equation is evaluated at the pole of the rotating object, whereθ and 

therefore
c

Φ and h are zero, the constant of integration is seen to be
pR

GM
H = .  Here, G is 

Newton’s gravitational constant, M is the mass of the celestial body, and Rp is the radius 

at the object’s pole.  Detailed numerical calculations suggest that to a reasonable 

approximation, Rp remains nearly constant as the rotation rateΩ  is increased (Papaloizou 

& Whelan, 1973).   

 3.2 The Maximum Case 

As a rapidly rotating celestial object spins, it begins to flatten, increasing its 

equatorial radius (Salgado et al., 1994).  The rotating body breaks apart at the mass-

shedding limit where the gravitational and centrifugal forces can no longer be balanced.  

This occurs when the orbital velocity at the equator is equal to the surface velocity.  The 

maximum spin frequency for a rotating star before it breaks apart is given by the 

following equation derived from Kepler’s laws of orbital motion: 

( )3
maxeqR

GM
k

=Ω
    (3) 

Here, 
maxeqR is the equatorial radius of the maximally rotating body. 

When equation (3) is substituted into the Bernoulli integral (2) assuming Rp is 

unaffected by rotation, one obtains the following formula: 
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       2

3

maxeq

pR
R =

    (4) 

This suggests that in order for an object to remain intact while rotating, the radius at the 

equator, Req, must be less than or equal to 1.5 times the radius at the object’s pole, Rp 

(Cook et al., 1993).  Using the results for maximum spin rate, equation (2) can be used 

again to obtain the following equation: 

0
)(

27

4)(
1

3

=













+−

pp R

R

R

R θθ
   (5) 

Equation (5) has the cubic solution of the following equation: 

( )
( )

( )θ

θ

sin

3
sin3pR

θR =
    (6) 

Here, Rp is the polar radius, and R(θ) is the stellar radius at angle θ from the pole.  If 

equations (3) and (4) are determined to be accurate, equations (5) and (6) can then be 

utilized for the purposes of estimating the shape of the maximally rotating neutron star.  

 3.3 The Intermediate Case  

For stars rotating at a frequency less than the maximum, the following formula is 

derived from equation (2), evaluated at the equator: 














−









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


=

Ω

eq

p

eq

pp

R

R

R

R

GM

R
1

2

232

   (6) 

It is convenient to employ the quantity known as eccentricity, defined by 
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to describe intermediate cases. Note that 0=e for a non-rotating body, and the maximum 

value of the eccentricity is
3

5
max =e . 

 3.4 Interactive Data Language 

The predictions of equations (3), (6), and (7) were evaluated in the program 

Interactive Data Language (IDL), Version 7.0.  Relating neutron star data were obtained 

from the following previous studies:   

i. Cook, G.B., Shapiro, S.L., Teukolsy, S.A., “Rapidly Rotating Neutron Stars in General 

Relativity: Realistic Equations of State” (1994): Cook et al. have constructed realistic 

rotating neutron star model sequences in general relativity using fourteen realistic EOS. 

Rotation rates, equatorial radius, eccentricity, and mass values were obtained from 

tables 12-23 of Appendix C.  The gravitational constant G=6.667×10
-8

g
-1

cm
3
s

-2
 and 

solar mass M○=1.989×10
33

g. 

ii. Cook, G.B., Shapiro, S.L., Teukolsy, S.A., “Rapidly Rotating Polytropes in General 

Relativity” (1994): Here, polytropic EOS are used to construct rotating neutron star 

model sequences in general relativity. Polytropic equations assume that n
n

kP
1+

= ρ , 

where P is pressure, ρ is density, k is a constant and n is known as the polytropic index.  

Polytropic models are not considered realistic, but are useful tools for modeling neutron 

stars.  Rotation rates, equatorial radius, eccentricity, and mass values were obtained 

from tables 7-21 of the Appendix.   
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iii. Friedman, J.L., Ipser, J.R., Parker, L., “Rapidly Rotating Neutron Star Models” 

(1986): Twelve EOS were used by Friedman et al. in this study to model sequences of 

neutron stars at various fixed injection energies. Rotation rates, equatorial radius, 

eccentricity, and mass values were obtained from tables 3-11. The gravitational 

constant G=6.670×10
-8

g
-1

cm
3
s

-2
 and solar mass M○=1.987×10

33
g. 

iv. Salgado, M. Bonazzola, S., Gourgoulhon, E., Haensel, P., “High Precision Rotating 

Neutron Star Models: I. Analysis of Neutron Star Properties” (1994); Salgado, M. 

Bonazzola, S., Gourgoulhon, E., Haensel, P., “High Precision Rotating Neutron Star 

Models: II. Large Sample of Neutron Star Properties”: Twelve realistic, as well as two 

polytropic EOS, were used to produce an extensive sample of over two thousand 

neutron star models, which were obtained electronically through the astronomical 

databases stored at the Centre de Données Astronomiques de Strasbourg.  Rotation 

rates, equatorial radius, and mass values were taken from models, were grouped by 

EOS, and split further according to baryon mass values. Because there were no 

eccentricities given for these models, we could not calculate the polar radius from the 

equatorial radius. For Salgado et al., II, however, within each group of set baryon mass, 

the rotation rates increased from zero to the maximum. We were thus able to assume 

the value of the star’s polar radius to be the same as its nonrotating equatorial radius, 

which was then held constant as the polar radius for each model in a set. The 

gravitational constant G=6.670×10
-11

m
3
kg

-1
s

-2
 and solar mass M○=2.0×10

33
g.       

Maximum velocities were calculated with obtained equatorial radii and masses 

using equation (3) and compared to that of the previous studies. Polar radius values were 

calculated in equation (7) using equatorial radius values, and maximum equatorial and 
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polar radii were compared to one another based on the criteria of equation (4). For 

intermediate cases, both sides of equation (6) were calculated separately using mass and 

radii values and compared to one another.  The data were analyzed in IDL to determine 

percent error between calculated and obtained previous results, as well as to create 

appropriate linear regression models relating our study to previous studies. 

IV. Results 

  It was determined that our results for maximum rotational frequency deviated by 

an average of 6.867% from that of the previous studies, while the intermediate equations 

had a larger average margin of 23.253% error.  For this reason, the intermediate data 

were also broken down according to EOS used by the previous studies in calculation. The 

calculated ratios of polar to equatorial radii had an average percent error of 9.812% when 

compared to the original 3:2 ratio.   

4.1 Cook et al., 1994: Realistic EOS 

 Even as the equatorial radius of the star increased, the ratio between our results 

and Cook’s results remained relatively constant with a mean quotient of 1.01982 

excluding outliers (Figure 2). Thus, the maximum spin data had an average error of 

1.098% when compared to that of the previous study. The ratios between polar and 

equatorial radii of maximally rotating cases confirm the accuracy of equation (4) within 

an average of 9.6032% of the original 3:2 polar to equatorial radius ratio.  As equatorial 

radius increases, there is only a slight increase in the ratio (Figure 3). 
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Figure 2. Comparison of equatorial radius and ratio of maximum rotation rate calculated in equation (3) to 

Cook et al.’s maximum rotation values. Various symbols represent equations of state. 

Figure 3. Comparison of equatorial radius to polar-equatorial radii ratio based upon equation (4). 

 

 

 

 

The two sides of intermediate equation (6) were found to have an average deviation of 

25.296% from one another (Figure 4), suggesting that the equation is somewhat accurate, 

but that a numerical constant could be multiplied by the right side of equation (6) to 

increase accuracy.  
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Figure 4. Comparison of equatorial radius to ratio of left and right sides of intermediate rotation 

rate equation (6) calculated using Cook et al.’s mass and radius values.  

Table 1. Correlation (r), coefficient of determination (r
2
), and slope (b) and significance of the linear 

regression line (sig.) for left compared to right sides of intermediate rotation equation (6), maximum rotation 

values (3) compared to Cook et al. values, and ratio of polar to equatorial radius (4). 

*p-value <0.05 

 

 

Linear associations were performed between each of the sets of variables. The 

correlations and coefficients of determination approached 1.000, with r-values 0.980, 

0.998, and 0.994, and r
2
 values 0.961, 0.996, and 0.987 for intermediate cases, maximum 

cases, and equatorial-polar radius ratios, respectively.  In addition, slope (b) values 1.336 

and 1.037 approached 1.000 for intermediate and maximum equations, respectively, and 

1.741 approached the 3:2 ratio assumed by equation (4). These values (Table 1) all 

demonstrate that our methods hold somewhat true for the values produced by Cook et al. 

 

 

4.2 Cook et al., 1994: Polytropic EOS 

The polytropic EOS were slightly less accurate than the realistic EOS for 

maximum rotation equation (3), producing spin frequencies within an average of 

8.1299% from obtained spin frequency data (Figure 5).   

Equation R r
2
 b sig. 

Intermediate (6) 0.980 0.961 1.336 0.038* 

Maximum (3) 0.998 0.996 1.037 0.021* 

Equatorial/Polar Radius (4) 0.994 0.987 1.741 0.002* 
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Figure 6. Comparison of Cook’s polytropic equatorial radius to polar to equatorial radii ratio based 

upon equation (4)  

Figure 5. Comparison of equatorial radius and ratio of maximum rotation rate calculated in equation (3) 

to Cook et al.’s maximum rotation values for polytropic EOS.  

 

 

For maximally rotating polytropic EOS, the ratio between polar and equatorial 

radius had a percent error of 7.663% when compared to the predicted 3:2 ratio, and 

decreased slightly as equatorial radius increased (Figure 6). 

  
 

For intermediate cases, the ratio between the two sides of equation (6) had a mean  
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Table 2. Correlation (r), coefficient of determination (r
2
), and slope (b) and significance of the linear 

regression line (sig) for left compared to right sides of intermediate rotation equation (6), maximum rotation 

values (3) compared to Cook Polytrope et al. values, and ratio of polar to equatorial radius (4). 

*p-value <0.05, **value approaches statistical significance 

The left side of intermediate equation (6) had a percent error of 18.908% when compared 

with the right side of the equation, excluding outliers (Figure 7).  

 

 

The results from linear regression models for Cook et al., polytropic EOS were less 

strongly correlated than Cook et al., realistic EOS for intermediate spin frequencies, but 

greater significance for maximum rotation and ratio of equatorial to polar radius: 0.090 

compared to 0.042 and 0.001, respectively (Table 2).   

 

 

 

4.2 Friedman et al., 1986 

The ratio between maximum obtained and calculated frequencies remained 

relatively constant as equatorial radius increased (Figure 8), with a mean of 12.353% 

Equation r r
2
 b Sig. 

Intermediate (6) 0.941 0.885 1.342 0.090** 

Maximum (3) 0.999 0.999 1.011 0.042* 

Equatorial/Polar Radius (4) 0.999 0.999 1.502 0.001* 

Figure 7. Comparison of equatorial radius and ratio of intermediate rotation rate calculated 

in equation (6) to Cook et al.’s rotation values for polytropic EOS.  
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Figure 8. Comparison of equatorial radius and ratio of maximum rotation rate calculated in equation (3) 

to Friedman et al.’s maximum rotation values for polytropic EOS. 

error.  The equatorial to polar radius ratio had an average of 7.662% error compared to 

the predicted 3:2 ratio (Figure 9). 

 

 

 

 

Figure 9. Comparison of Frieman et al.’s equatorial radius and polar to equatorial radii ratio based 

upon equation (4)  
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Table 3. Correlation (r), coefficient of determination (r
2
), and slope (b) and significance of the linear 

regression line (sig) for left compared to right sides of intermediate rotation equation (6), maximum rotation 

values (3) compared to Friedman et al.’s values, and ratio of polar to equatorial radius (4). 

*p-value <0.05 

For intermediate cases, the left and right sides of equation (6) deviated 9.297% from one 

another (Figure 10). 

 

 

The linear model for values from Friedman et al. compared to our calculated values 

(Table 3) demonstrates the relative accuracy of our formulae, as well as higher degree of 

accuracy of the maximum equations as compared to that of the intermediate cases. 

 

 

 

4.4 Salgado et al., 1994 I. 

 Obtained rotational frequency values had a mean of 11.337% error for the 

maximum case (Figure 11), and 23.536% for the intermediate case (Figure 12).  The ratio 

of radii could not be calculated, as polar radius was unable to be calculated. 

Equation r r
2
 b sig. 

Intermediate (6) 0.955 0.913 1.042 0.162 

Maximum (3) 0.980 0.961 1.084 0.030* 

Equatorial/Polar Radius (4) 0.987 0.973 1.592 0.001* 

Figure 10. Comparison of equatorial radius with ratio of intermediate rotation rate calculated in 
equation (6) to Friedman et al.’s rotation values.  
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Figure 12. Comparison of ratio of equatorial radius to polar radius with ratio of intermediate 

rotation rate calculated in equation (6) to Salgado et al.’s rotation values.  

Figure 11. Comparison of equatorial radius and ratio of maximum rotation rate 

calculated in equation (3) to Salgado et al.’s maximum rotation values for various EOS.  

 

 

 

 

 

The linear regression analysis interestingly produced more significant results for 

intermediate cases than for maximum (Table 4), despite the fact that the mean percent 

errors were greater for intermediate than for maximum cases, likely due to the presence 

of more extreme outliers in Figure 11 than in Figure 12. 
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Figure 13. Comparison of equatorial radius and ratio of maximum rotation rate calculated in equation 

(3) to Salgado II et al.’s maximum rotation values for various EOS.  

 

Table 4. Correlation (r), coefficient of determination (r
2
), and slope (b) and significance of the linear 

regression line (sig) for left compared to right sides of intermediate rotation equation (6) and maximum 

rotation values (3) compared to Salgado I et al.’s values. 

*p-value <0.05 

 

 

4.5 Salgado et al., 1994 II.  

Our calculated maximum spin frequency values deviated from those calculated by 

Salgado et al. II with a mean error of 1.4187% (Figure 13), while the ratio of equatorial to 

polar radius had a mean 14.321% error (Figure 14).  The graph for intermediate ratio is 

omitted, as this extensive list of over two thousand data values produced varying results, 

with an average of 39.227% error. 

 

 

Equation r r
2
 b sig. 

Intermediate (6) 0.980 0.961 0.896 0.029* 

Maximum (3) 0.955 0.912 0.659 0.329 
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Figure 14. Comparison of equatorial radius and polar to equatorial radii ratio based upon equation (4) 

Table 5. Correlation (r), coefficient of determination (r
2
), and slope (b) and significance of the linear 

regression line (sig) for left compared to right sides of intermediate rotation equation (6), maximum rotation 

values (3) compared to Salgado II et al.’s values, and ratio of polar to equatorial radius (4). 

*p-value <0.01, **value approaching significance 

Table 6. Percent error for data sorted by respective EOS used by 

previous studies. 

 

The linear regression model demonstrates the variability of the intermediate values, 

which have the lowest coefficient of determination, slope, and significance out of the 

three equations (Table 5).  

 

 

4.6 Equation of State Breakdown 

Table 6 includes fourteen EOS, 

each of which represents a large portion 

of the dataset and is shared by multiple 

studies. Percent error pertaining to the 

ratio of left to right sides of equation (6) 

is grouped by EOS.  The errors are 

Equation r r
2
 b sig. 

Intermediate (6) 0.941 0.885 0.731 0.090** 

Maximum (3) 0.995 0.990 0.987 0.001* 

Equatorial/Polar Radius (4) 0.995 0.990 1.502 0.001* 

Equation of State % error 

AV+14UV, Wiringa et al., 1988 36.303 

Bethe & Johnson, 1974 35.663 

Causality-Limit EOS 45.693 

Diaz Alonzo, 1985 36.640 

Friedman, Pandharipande, 1981 39.127 

Glendenning, 1985: c1, c2, c3 34.278 

Haensel et al., 1981 38.451 

Pandharipande, 1971 29.244 

Pandharipande et al., 1975a, b 32.326 

Polytropic Analytical EOS 23.702 

UV+TNI, Wiringa et al., 1988 39.902 

Lorenz et al., 1993 18.182 

UV+UV Wiringa et al., 1988 46.540 

Weber et al., 1991 35.584 
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relatively large, ranging from 29.244% (Pandharipande et al., 1975a, b) to 46.540%, 

(UV+UV Wiringa et al., 1988), excluding the Polytropic Analytical and Lorenz et al. 

EOS, with values 23.702% and 18.182%, respectively.   

V. Discussion and Conclusion 

Previous research has accurately modeled the shapes of individual pulsars (Cook 

et al, 1994, Friedman et al., 1986, Salgado et al., 1994), but the process by which this is 

done requires many complex components and steps.  In addition, various EOS and 

numerical codes make very different predictions about neutron star shape.  For this 

reason, more basic analytical equations are necessary to standardize the modeling of 

neutron star shape.  Basic maximum and intermediate orbital velocity equations are 

relatively accurate in determining neutron star radius, though the smaller percentages for 

maximally rotating neutron stars demonstrate that the maximum velocity formula has a 

consistent, more easily corrected error than that of the intermediate cases.  It is interesting 

to note that when divided by EOS, the error of the intermediate cases, most of which are 

from Salgado II et al., remains relatively high (Table 6).  The smaller margin of error for 

the polytropic EOS could be because these data were unrealistic models.  This data 

supports the need for further refinement of the intermediate cases. 

The limitations of this research are inherent to theoretical astrophysics, which 

requires that assumptions be made in order to test theories. The Newtonian Roche Model 

for Rotating Stars assumes that the mass of a neutron star is concentrated in its center.  In 

addition, when calculating polar radius values from equatorial radius values obtained 

from Salgado II et al., 1994, we assumed that the stationary neutron star’s equatorial 

radius was equal to its polar radius, and the polar radius of a spinning body was then said 
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to be unchanging.  The complexity of our universe is also, of course, a factor; it may in 

fact be necessary to take into account complex factors such as general relativity through 

the use of separate equations that are specific to certain aspects of neutron stars.  

However, our promising results as well as previous research point to the success of a 

more uniform equation addressing many of these aspects.  By simplifying the 

determination of neutron star shape, the study of pulse profiles of neutron stars can in 

turn be made easier.  As neutron stars that emit X-rays rotate, the beams of radiation 

move in and out of Earth’s view and thus vary in intensity.  Understanding the shapes of 

these neutron stars is an important component of models of these and other observed 

variations.   

This study can not only contribute to a deeper understanding of neutron stars, but 

can potentially provide valuable insight into laws of gravitation, which are still poorly 

understood and can be tested using pulsars. The developed equations may also be useful 

in the analysis of celestial bodies other than neutron stars, and a simpler equation will 

allow many more objects to be analyzed within a given period of time.  Future research 

should obtain codes to test these equations using results from a wider range of models, 

and make the equations more accurate through further algebraic manipulation.  Attempts 

will be made to assess other basic equations for their accuracy, such as density and 

volume equations, and ways in which to improve these basic equations will be explored.    
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