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1 Research Experience

During the summer between my junior and senior year, I was extremely lucky to be one of the

80 rising seniors who were admitted to the Research Science Institute (RSI) held at MIT. My

mentor was Ryan Reich, a graduate student from Harvard University. Before the program,

I was contacted by my mentor and was given a couple of project ideas. I could either do a

project on tropical geometry or do a project similar to that of his previous student. I chose

the latter. His previous student studied the intersection of two quadric surfaces1 in CP3 and

found an explicit normal form2. This paper can be found at [9].

I thoroughly read through the paper and learned of things such as projective space,

pencils, fractional linear transformations, and birational equivalence. After I finished reading

this paper, I decided to read some of its references. I read a few chapters from Silverman and

Tate’s Rational Points on Elliptic Curves ([6]) and Silverman’s Arithmetic of Elliptic Curves

([7]), and a couple of papers that were used by Q. Yuan in his paper such as [1], [4], [5].

Additionally I decided to learn some complex analysis from Brown and Churchill’s Complex

Analysis and Applications ([2]). Through this I familiarized myself with elliptic curves and

their group law, quadric surface intersection, the Weierstrass form of elliptic curves, and

some more projective geometry. This whole process of learning more math took about a

month before I left for RSI.

1A quadric surface and a cubic surface are defined at the beginning of Section 3.
2A normal form X for a certain set of objects S means that every element in S is equivalent to X. For

example, (x− h)2 + (y − k)2 = r2 is a normal form for all circles.
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While at RSI, I initially tried to find an explicit normal form for the intersection of a

quadric surface and a cubic surface by trying to adapt Q. Yuan’s results to mine. However,

after a few weeks of no success, I decided to adapt the methods of [8] instead to the inter-

section of quadric and cubic surfaces. Since I had only time to do four weeks of research

at RSI, after some initial success of adapting Wang et al.’s methods to the intersection of a

quadric surface with a cubic surface, RSI ended. However, since math is rather portable, I

continued to think about my problem when I got home.

Since I was trying to adapt the methods of [8], I would be trying to find a parameterization

of the intersection curve. I hit numerous impasses and sometimes spent hours at my local

university’s library thinking and looking for theorems and tools. For example, when I started

to parameterize my space curve, I ran into the problem that one of Wang et al.’s theorem

that was crucial in parameterization failed for my intersection space curve projection. I was

stuck, but I knew I could adapt it some way. I read ahead. I tried multiple ways of attacking

this problem. Many times I failed. I didn’t give up. I just went back to my notes, and looked

for new ideas that I had written down. Weeks later, while I was reading the parameterization

section in Wang et al.’s paper, I suddenly realized that if I lowered the degree of the space

curve projection, I could successfully adapt the failed theorem. Another example would be

that initially I didn’t have the Taylor polynomial for a multivariate function that was needed

for parameterizing the space curve. I pored over all the calculus and analysis books that I

had and my local library had. Finally, I was able to track this definition to Colley’s Vector

Calculus ([3]). Finding this formula took days, I could finally proceed on with my research.

Eventually I was able to find the parameterization for a special case of the intersec-

tion curve. This is what I wrote my paper on. I eventually used this paper to enter the

Siemens Competition and the Intel Science Talent Search and achieved Semifinalist status

in both competitions. This research experience gave me a glimpse of math in a non-school

environment and made me want to become a mathematician even more than before.

In the following section, I will give a brief introduction to some projective geometry. My
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research summary is in Section 3.

2 Some Basic Projective Geometry

In this section I summarize some of the tools I used in my research. This section contains

some basic terms and definitions along with a statement of Bézout’s Theorem. There is a

more thorough introduction to projective geometry in Appendix A of [6].

In my paper we work in CP3, that is, complex projective 3-space. We first begin

by defining homogeneous coordinates. Points in CP3 are homogeneous coordinates writ-

ten like [ a1 a2 a3 a4 ] where ai ∈ C. We say that two points [ a1 a2 a3 a4 ] and

[ b1 b2 b3 b4 ] are equivalent if there is a non-zero λ such that ai = λbi for each i. For

example the points [ 1 2 3 4 ] and [ 3 6 9 12 ] are equivalent in projective space.

We now define CP3, that is complex projective 3-space. Complex projective 3-space is

defined to be the set of all quadruples [ a1 a2 a3 a4 ] with a1, a2, a3, a4 ∈ C and not all

equal to 0 and where each quadruple is not equivalent to any other quadruple in the set.

We now define A3, that is affine 3-space. Affine 3-space is defined to be the set of triples

(a1, a2, a3) with ai any number.

A homogeneous polynomial is a polynomial all of whose terms have the same degree. For

example, x3y − x2y2 = 0 is a homogeneous polynomial while x2 − y = 0 is not. We can

dehomogenize a homogeneous polynomial by setting the variable we want to dehomogenize

by to be 1. For example, if we dehomogenize the homogeneous polynomial XW 2−Z2W = 0

by W , we get the polynomial x − z2 = 0. We can also dehomogenize a point in projective

geometry, in other words we can switch from projective points to affine points. Assume we

have the projective coordinate [ a1 a2 a3 a4 ] in CP3. We dehomogenize by a3 and we

get

[
a1

a3

a2

a3

1
a4

a3

]
. Now we have the coordinate

(
a1

a3

,
a2

a3

,
a4

a3

)
in the affine space.

The plane at infinity in CP3 is given by the projective coordinates [ r s t 0 ]. We

notice that if we dehomogenize by the last coordinate, we are dividing by 0. A property of
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the plane at infinity is that parallel lines intersect at the plane at infinity.

Additionally, the following theorem is used in my research.

Theorem (Bézout’s Theorem). In projective space, if there are two surfaces, one of degree

m, and another of degree n, then the intersection curve has degree mn. Similarly, if there

is a surface of degree m and a curve of degree n, then the curve and the surface intersect at

mn points.

3 Research Summary

The general homogeneous polynomial for a quadric surface in CP3 can be written as

Q(X, Y, Z,W ) = XQ1X
T = 0,

where Q1 is a complex, invertible, symmetric 4× 4 matrix and where X = [ X Y Z W ]

is in homogeneous coordinates. Similarly, the general homogeneous polynomial for a cubic

surface in CP3 can be written as

C(X, Y, Z,W ) = XXC1X
T + YXC2X

T + ZXC3X
T +WXC4X

T = 0,

where

C1 =



a b c d

b e f g

c f h i

d g i j


, C2 =



b e f g

e k l m

f l n q

g m q p


, C3 =



c f h i

f l n q

h n q r

i q r s


, C4 =



d g i j

g m q p

i q r s

j p s t


.

We first parameterize the quadric surface in a similar manner demonstrated in [8], that is,

let X0 be a fixed point on the quadric surface Q, and let T = [ r s t 0 ] be a point on
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the plane at infinity. Then

P (r, s, t) = (TQ1T
T )X0 − 2(X0Q1T

T )T

is a parameterization of the quadric surface Q.

Define a space curve to be the intersection curve in space between a quadric surface and

a cubic surface. Define a plane curve to be the space curve projected via P (r, s, t) onto

the (r, s, t) plane, the plane at infinity, through a point on the space curve. The space

curve corresponds to a plane curve Î(r, s, t) = 0, which is a certain polynomial of degree 6

by Bézout’s Theorem. This polynomial Î(r, s, t) = 0 can be further factored by using the

following theorem.

Theorem. We have Î(r, s, t) = (X0Q1T
T )kI(r, s, t), where I(r, s, t) is a degree 6 − k poly-

nomial if and only if X0 is a k-fold point3on the space curve between the quadric and cubic

surface.

Because we projected through the point X0 to obtain our parameterization, by a geo-

metric argument, we can show that X0Q1T
T = 0. Hence the polynomial for the plane curve

is

I(r, s, t) =
Î(r, s, t)

(X0Q1TT )k

if X0 is a k-fold point of the space curve.

Define a base point to be a point (α, β, γ) that is not (0, 0, 0) which satisfies P (α, β, γ) = 0.

This point corresponds to the point [ α β γ 0 ] on the plane at infinity in CP3.

Let X0 be a 3-fold point. By the previous equation, we see that I(r, s, t) is a degree

3 equation. We can use methods similar in that of [8] to parameterize the intersection

curve. Despite the limited scope of our parameterization theorems, as our parameterization

theorems are rational or just contain a square root we provide a simple and efficient method

3A k-fold point on the space curve between the quadric and cubic surface means that if we intersect a
plane with the curve through the k-fold point, the plane will have 6− k other intersections with the curve.
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for finding the parameterization of the intersection curve in space.

Our main results are obtained by using the multivariate Taylor polynomial4 for the

polynomial I(r, s, t). It is as follows

Definition. (cf. [3]) The k-th order Taylor polynomial for function f : X ⊆ Rn → R of

class Ck near a ∈ X is given by

pk(x) = f(a) +
n∑

i1=1

fxi1
(a)(xi1 − ai1) +

1

2!

n∑
i1,i2=1

fxi1
xi2

(a)(xi1 − ai1)(xi2 − ai2) (1)

+ · · ·+ 1

k!

n∑
i1,i2,··· ,ik=1

fxi1
xi2

···xik
(a)(xi1 − ai1)(xi2 − ai2) · · · (xik − aik).

There are now two cases to consider for I(r, s, t), when it is a singular curve and when it is

a non-singular curve5. Note that the multivariate Taylor polynomial is for nonhomogeneous

polynomials, so we must first dehomogenize I(r, s, t) and then rehomogenize. By using the

above definition, we obtain the following two results.

Theorem. The space curve whose projection is an irreducible singular curve I(r, s, t) has

a degree 4 rational parameterization if I(r, s, t) passes through both base points of P (r, s, t).

Moreover, this parameterization of the space curve is of the form

R(u, v) =
pNpT

(ub0 − va0)(ub1 − va1)
.

Theorem. The space curve whose projection is an irreducible nonsingular curve I(r, s, t)

has a parameterization involving a square root if I(r, s, t) passes through both base points of

P (r, s, t). Moreover, this parameterization is of the form

R(u, v) =
F (u, v)

uv0 − vu0

± G(u, v)

uv0 − vu0

√
D(u, v).

4Recall from single variable calculus that the Taylor polynomial for a function f(x) near the point a is∑n
k=0

f(n)(a)
n! (x− a)n. In short, the multivariate Taylor polynomial is a generalization of this.

5A singular curve has at least one singular point. A point (α, β, γ) is said to be singular if I(α, β, γ) = 0
and all partial derivatives vanish at (α, β, γ). In other words I(α, β, γ) = 0 and ∂I

∂r = ∂I
∂s = ∂I

∂t = 0 when
evaluated at (α, β, γ)
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These two theorems partially extend the results of [8] to the intersection of quadric and

cubic surfaces. One possible continuation of this research could be to parameterize the

intersection curve when I(r, s, t) is a quintic polynomial. This would imply that X0 is a 1-

fold point, which is the most general case. By doing this, we would have completely adapted

Wang et. al’s methods to the intersection of quadric and cubic surfaces. Another possible

continuation would be to find an explicit normal form for the intersection of a quadric and

a cubic surface, thus extending the results of [9].
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