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Computational Development of a 
Comprehensive Database of Drug-Drug 
Interactions – Amy Tai 

PERSONAL SECTION 

Computational biology has been “my” field for quite a while, albeit a nebulous term, but 

I honestly cannot pinpoint concrete reasons behind this long-term interest.  Upon extensive 

reflection, I have developed a few milestones that cumulatively explain my fascination, but these 

few are only part of the complex system of cause and effect that have influenced my academic 

career. 

It began freshman year, while I frustratingly browsed Google for hours after missing a 

question on a biology exam.  What were exons and introns?  I had never heard of them in class, 

and the textbook relinquished no information either.  Surprisingly enough, that one night of 

rudimentary research sealed my fate for the next four years.  I became interested in introns and 

exons and the still-open problem of differentiating between the two in an arbitrary segment of 

human DNA.  Developing a computational method of binary classification was my first research 

project in bioinformatics.  I worked on it for a good 18 months, after which I decided I needed to 

learn more theory; the method I developed used painfully simple arithmetic, and I was stuck 

unless I intended to derive an intelligent system from scratch. 

In fact, for a time, I really was stuck.  For the entire summer between sophomore and 

junior year, my research project rusted in a corner, because I had not yet discovered the true 

meaning of “computational” in “computational biology.”  To me, “computational” was still the 

four major operations: addition, subtraction, multiplication, and division; I was “computing” 

numbers, much like a cheap, gas-station calculator.  Little did I know, however, that there is an 
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entire field of artificial intelligence focusing on classifiers, statistical learning methods, and 

intelligent systems.  If you think about it, this is exactly the kind of tool that computational 

biologists need: some kind of artificial mind that will make decisions for you based on a certain 

input.  You want to build some sort of object—computer program, robot, etc. (though robot is 

slightly fancier for our goals; nevertheless your program can be embedded in an interactive 

robot, if you truly wish)—that will make decisions for you on a large scale based on only 

numerical data that you give it.  There are several advantages to this approach (and yes, now I 

will proceed to iterate through a list of the pros of computational methods).  First, the 

quantitative nature eliminates the immediate need for laboratory methods.  Of course, if we delve 

deeper into the concept of quantitative approaches, we discover a paradox, because it turns out 

that we need experimental data to train and develop accurate computational tools.  Regardless, 

the ultimate goal of artificial systems is to make quicker decisions that can shepherd research in a 

particular direction, until the much slower laboratory results prove us wrong (or right—research 

is always a gamble in the unknown, of course).  Second, we can tackle a large body of data in a 

very short amount of time.  Imagine trying to annotate all 3 billion base pairs of the human 

genome by hand (meaning, in the laboratory).  Scientists have been trying to do that even before 

the genome was decoded in 2001, yet we still know very little about the human genome.  Under 

ideal conditions, a developed model can help scientists identify potential segments of human 

DNA with desired characteristics, after which scientists will have the locus of a specific DNA 

segment to study. 

With that basic introduction to bioinformatics out of the way, let me tell you my personal 

experience with the field.  As I mentioned previously, I was stuck for a summer because I had 

not yet discovered the wonders of applied mathematics.  Then, on another fateful day, I stumbled 
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across a Bayesian network article on PLoS Bioinformatics.  For some time, actually, a model had 

been developing in my head; with this model, I imagined an input layer, a magical hidden layer, 

and an output layer where the end result was reproduced.  I did not know that this wondrous 

device was called a neural network, so when I read about Bayesian networks, I mistakenly 

thought that Bayesian networks were my culprit.  As I read some more about them, though, I 

realized that what I wanted were neural networks, a handy mathematical tool that takes input and 

spits out an output for the researcher to decipher (more on neural nets in the paper).  Things 

happened quickly from here.  I got a hold of a statistical software package that can train neural 

networks and jumped right into the same project, now armed with neural nets. 

But that was just the beginning that prepared me for my current research project, which 

started during the summer after junior year.  I went to a summer program, the Research Science 

Institute, which is funded through the Center for Excellence in Education and held at 

mentorships sites around Boston for six weeks each summer.  My mentors were conveniently 

computational biologists and involved in the computing departments of both MIT and Harvard 

Medical School.  They had some graduate students working on a drug database, but because 

nothing really came out of the investigation, they handed the responsibility over to me.  In short, 

they gave me the database and told me to get to work.  I did. 

With my unusual interest in predictive biology (predictions via computation, of course), 

the first thing I could think of was predicting unknown drug-drug interactions (DDIs).  This 

database contains more than 4,000 drugs (see paper) and only a fraction of the possible 

interactions between the drugs are given.  With the help of my tutor at RSI, I really got to get 

down and dirty with various concepts in statistics.  Math became tangible, because I had to use 

probabilities to model the behavior of drug-drug interactions.  Statistics was the key to 
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developing these probabilities, because it helped me find a pattern in known drug-drug 

interactions, in order to create a model of prediction for new DDIs.  I fiddled around with various 

probability distributions using the statistical software and trying to integrate them into my Java 

programs.  In fact, a large part of my research project was spent programming, because I had to 

find a way to transfer my raw data into numbers that I can put into the neural network.  

Programming is an excellent exercise in logic and thinking.  In order to represent what I wanted 

to do in lines of code, I had to meticulously write out every step and calculation that I wanted the 

program to perform.  This organization helped keep me on track and gave me a clearer picture of 

what I wanted to do with the database. 

Although I was not done with my research at the end of the summer, I continued working 

on it throughout senior year and eventually submitted it as an Intel Science Talent Search project 

in November.  To my great enthusiasm, I found out that my project made the semifinalist cut!  

When I did not make finalist standing, I was not too crestfallen, because the progress I had made 

with my research project was the true prize.  I had figured out a way to continue my research, 

even beyond my submission to the STS.  My research did not end with STS; in fact, as cheesy as 

it sounds, STS was really just the beginning.  Now, I am still working on this project, with an 

even more resolved picture of what I want to do with this research.  Looking back, I think one of 

the most exciting aspects of scientific research is that you can make it your own.  All of my 

research projects have helped me develop a deeper understanding of bioinformatics and the 

individual fields that compose it—mathematics, computer science, biology, and chemistry.  

Moreover, because I have pursued these projects of my own volition, I have a personal and deep 

connection with the theory behind my research.  With no preparation, I can field any question 

about my research, because I have worked on it for years, carefully identifying each of its errors, 
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successes, and possible extensions.  This sort of experience seems very surreal for a high school 

student, but in reality, anyone can conduct research as long as they have the interest and 

ambition.  I found problems in science and decided to pursue them.  That is something that any 

individual—especially any curious high schooler—can do. 

RESEARCH SECTION 

Introduction 

An understanding of drug-drug interactions (DDIs) impacts fields ranging from medicine 

to drug development to public health.  In 2004, the average American took a combination of 12 

prescription drugs per day [1].  This daily behavior seems trivial, but lack of proper DDI 

knowledge puts millions of individuals at risk, as a set of 12 drugs could cause more than 1000 

lethal interactions.  Also in 2004, more than 1% of all deaths were directly caused by DDIs, 

because these patients were oblivious to the life-threatening reactions that their drug repertoire 

would cause in the human body [2].  By developing a comprehensive database of DDIs, we can 

hopefully reduce the number of deaths associated with DDIs.  The database would be used by 

doctors when initially prescribing drugs and be incorporated in software used by pharmacists to 

determine which drugs to dispense. There are existing programs that help pharmacists dispense 

better combinations of drugs, but these are sparse and often inaccurate.  One of the goals of this 

investigation is to improve these programs in accuracy so that pharmacies can be more effective 

in preventing fatal DDIs. 

The objective is to construct a comprehensive database of drug-drug interactions using a 

computational approach.  There are too many DDIs to rely simply on laboratory 

experimentation; even if every person in the world identified one DDI per day for billions of 

years, there would still be more DDIs because of the limitless number of possible drug 
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combinations in varying environments.        

 There are, however, existing databases of DDIs, so it would be repetitive to create a new 

one from scratch.  The structural goal of this project is to develop a way to make better DDI 

databases from an existing database. 

 

Background 

Let us establish the nature of the existing database.  After understanding the database, we 

can capitalize on its structure to complete it.  The Drug Advice eXpert (DAX) database includes 

more than 4,000 drugs and 50,000 interactions between any two drugs.  Note that 4,000 drugs 

can potentially have more than 8 million interactions, hence this is a very sparse database.  A 

small portion of the database is reproduced in Figure 1.   

 

Figure 1: The solid lines indicate interactions already in the database. The dotted lines indicate examples of 

unknown interactions that we hope to predict with the neural network model. 

 

Because the database was constructed through a literature search, each interaction also has a 

level of reliability, based on the reliability of the article and experiment from which the DDI was 

derived.  The drugs are also organized into classes; drugs with similar chemical compositions are 

in the same class.  Reliability and drug class will be used in the model (see Methods). 
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 The immediate purpose of this project is to complete the DAX database by predicting all 

possible interactions between the more than 4,000 drugs in the database.  To do this, we train our 

model with information from the 50,000 known interactions.  We then use the model to predict 

the remaining interactions, which include the dotted lines in Figure 1.  

Overview of Neural Networks 

One of the most important aspects of this investigation is model development.  We need a 

way to predict DDIs with sufficient accuracy.  The model chosen was a neural network model.  

Neural nets combine many different algorithms to form efficient yet compact systems; a diagram 

of the model used is shown in Figure 3.  During a “training” session, formulas are derived 

between nodes, which are the circular hubs in Figure 3.  These formulas are established so that 

they minimize error within the training data set.  Once the formulas are derived, they remain 

fixed for the “testing” session, where the model is tested on a new data set.  The accuracy of the 

model is determined with respect to this test set.  The specific qualities chosen for the input layer 

for our DDI model is explained in Methods.  

 

Figure 3: A schematic of the neural network model used to predict new 

drug-drug interactions. Formulas are inserted at the edges during training. 
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Methods 

 Each interaction is classified into one of six categories of effect.  The descriptions of the 

categories are shown in Table 1.  Along with the corresponding level of reliability (with Level 1 

being the least reliable and Level 4 being the most reliable), each category-reliability combo was 

assigned to a number from 1-10.  This final number represents the relative intensity of the 

interaction in question.  Each interaction in the database is classified in a certain intensity class 

based on this table.  This makes clinical data analysis easier, because only one number (the 

intensity) is associated with each interaction. 

Category of Effect 
Level of 

Reliability 
Intensity of Effect 

A 

(significance is unlikely) 
All Levels 1 

B 1, 2 2 

(significance is questionable) 3, 4 3 

Z 

(same active ingredient/reconsider doses) 

1,2 3 

3,4 4 

C 

(plasma levels need to be monitored) 

1 4 

2, 3 5 

4 6 

D 

(severe clinical consequences) 

1 7 

2 8 

3 9 

4 10 
Table 1: Conversion from effect and reliability to intensity. 

The Input Layer 

Four “scores” were chosen as qualities for the input layer.  These four should help us 

predict the intensity of an interaction; for ease of discussion, “positive” interactions have 

intensities from 1-3 and “negative” interactions have intensities from 4-10.  The scores are 

described as follows. 
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Neighbor Score 

The neighbor score works by the principal of mutual friendship.  If Alice and Bob and 

friends, and Bob and Carol are friends, then Alice and Carol have a good chance of being 

friends.  Consider the possible interaction between Ampicillin and Amoxicillin in Figure 1.  Both 

react with cocaine, theoretically increasing the probability that Ampicillin and Amoxcillin 

interact.  The neighbor score also considers the reliability of interactions.  For example, maybe 

we heard from an unreliable source that Alice and Bob are good friends.  This would lessen the 

probability of a friendship between Alice and Carol.  Similarly, if the logged interaction between 

Amoxicillin and cocaine was from an unreliable experiment, the probability of interaction 

between Ampicillin and Amoxicillin decreases.  

Interaction Score 

The interaction score calculated the fraction of all of a drug’s known interactions that 

have an effect.  For example, in Figure 1, if we consider the potential reaction between Ibuprofen 

and cocaine, Ibuprofen’s interaction score would be 0.25, because out of its four possible 

interactions, only the one with Ampicillin is positive.  Cocaine would yield an interaction score 

of 0.75, because three out of its four possible interactions are positive.  Theoretically, the 

interaction score should reflect the reactivity of a drug, because more reactive drugs would have 

higher interaction scores.  This score covers the next two nodes of the input layer in Figure 3. 

Coverage Ratio Score 

The coverage ratio capitalizes on the drug class organization of the database.  Say we are 

considering the interaction between drugs 1 and 4 in Figure 4.  Then the coverage ratio looks to 

the drug classes of 1 and 4, which are Class 1 and Class 2, respectively.  There are 8 possible 

interactions between the two classes, and only five exist (the solid lines).  Hence, the coverage 
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ratio is 5/8 = 0.625.  Theoretically, the coverage ratio reflects the reactivity of two general drug 

types; if the relatives of drugs 1 and 4 react appreciably, then drugs 1 and 4 have a greater chance 

of interacting as well. 

 

Figure 4: An example of drugs organized into classes. 

Training and Testing Data Sets 

The DAX database was stored in the form of an adjacency matrix.  If we do not separate 

the training and test sets, then the model accuracy will be skewed.  For example, say the neural 

net was training with interactions from drug A.  If we test for interactions of drug A in the testing 

session, the model will already know some of the behavior of A, invalidating our results.  Hence, 

each drug was only available in one set.  We segregated the adjacency matrix by Figure 6, 

simulating two separate, mini-databases.  There was approximately the same number of 

interactions available in each potential data set.  Note that the potential training and testing sets 

are mutually exclusive, preserving the integrity of our model.  Approximately 2,000 interactions 

were randomly chosen for training from the potential training set, and 2,600 were randomly 

chosen for testing from the potential test set.   

 Class 1 

Class 2 

1 3 2 

4 5 6 
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Figure 5: Segregation of the database into mutually exclusive training and test sets. 

 

Results and Analysis 

We trained the neural network on the 2,000 training interactions.  Then, we tested the 

network with the 2,600 test interactions.  To ease decision-making, we said that any intensity less 

than 4 was a negative interaction and any intensity greater than 3 was a positive interaction.  This 

cutoff makes sense from Table 1.  With this cutoff, our “general” accuracy was 94.2 %, with a 

false positive rate of 3.4%.  This type of decision-making is very general, because it only takes 

on a true/false value.  K-accuracies provide a closer prediction. 

Let us call k-accuracy the chance that a prediction will be within k intensity levels of the 

actual intensity.  For example, say an interaction has intensity 8.  Then any prediction from 7 to 9 

is considered a correct prediction.  The 1-accuracy was 64.8 %  and the 2-accuracy was 70.6 %.  

K-accuracies are better for considering the definite, rather than relative, intensity of an 

interaction.  However, for general predictions, we can safely say that the model can predict the 

existence of an interaction, based on the general accuracy above.   

We also wanted to determine which input quality was most important.  We did this by 

retraining networks with only three inputs.  The accuracy of the resulting networks should reveal 
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the relative effect of each input on the output as predicted by our neural net.  The accuracies are 

listed in Table 2. 

Score Left Out 
General 

Accuracy 
1-Accuracy 2-Accuracy 

None 94.2 % 64.8 % 65.7 % 

Coverage Ratio 

Score 
89.6 % 52.0 % 78.3 % 

Interaction Score 

of 1st Node 
68.0 % 63.2 % 72.3 % 

Interaction Score 

of 2nd Node 
93.2 % 53.7 % 70.6 % 

Neighbor Score 84.8 % 59.6 % 66.3 % 

Table 2: A summary of the accuracies of all the networks. 

To analyze Table 2, it is more helpful to look at the general accuracies separately from 

the k-accuracies.  In terms of general accuracy, the network without the 1
st
 Interaction score 

performed most poorly, meaning this score has a high effect on the general predicting ability of 

the network.  However, for 1-accuracy, which measures the accuracy of the network at greatest 

resolution, the network without the coverage ratio performed most poorly.  Hence, the coverage 

ratio is better at determining the numerical intensity value for an interaction.  The neighbor score 

also has a fairly strong effect, because the network without the neighbor score performed most 

poorly in terms of 2-Accuracy.  In general, because each score contributes to a different measure 

of accuracy, we conclude that none of the scores has a more noticeable effect on prediction than 

the other scores. 

 

Conclusion and Further Research 

Our final model had an accuracy of 94.2 % at best, which means that the model we 

developed is a fairly good predictor of new DDIs.  It shows promise for further modification so 

that we can complete the DDI database.   
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The input layer is the most important aspect of the model.  Without proper predictive 

qualities, the model would be ineffective, analogous to trying to predict someone’s weight from 

hair color, eye color, IQ, and favorite book.  Generally, taking out a score increases the 2-

accuracy of the model.  This means, with less excess noise, the network is capable of making 

precise predictions.  Conversely, when all four scores are used, the network has a better general 

accuracy, because it has a better idea of the “big picture”, but has less resolution, i.e.- it has 

poorer k-accuracies.  One possibility for increasing the resolution of our model is cleaning up the 

database.  One of the reliability levels indicates that an interaction “is suggested by inconclusive 

case-reports, in-vitro studies or studies on related substances.”  Such a reliability is close to 

saying that an interaction is still unknown.  Maybe the interactions that have been verified in this 

way should be removed and new, more reliable reports explored. 

We could also try different models.  Bayesian networks and support vector machines may 

be better models for our data, and comparing their predictive results with our neural network can 

reveal more about the distribution of DDIs.  Even more conclusive validation is experimental 

evidence; the next step after a computational approach is a wet-lab approach, which is what our 

computational method replaces.  Although wet-labs are time-consuming, their confirmation of 

the computational predictions can create a more robust model. 

We can imagine many applications of this database down the line.  For example, we can 

create software that tells pharmacists and doctors the best combination of drugs for certain 

symptoms.  Say a patient needs to be treated with depression, insomnia, and allergies.  Then the 

software will return, from a group of 500+ possible drug combinations, the optimal three drugs 

that will minimize interaction within the human body.  The effectiveness of the software depends 

on the expanse and reliability of the database, which presently includes drug families ranging 
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from antibiotics to topical creams to hormone regulators.  Further, once we perfect the model 

developed in this investigation, we can extend it to accepting parameters, such as pH or 

temperature in which two drugs interact.  By incorporating more information about the 

environment of reaction, we can be more specific about when DDIs occur.  All these applications 

stem from the basic notion behind this investigation: being able to predict when drug-drug 

interactions will occur. 


