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i. Personal Section 

My interest in the subject began at the end of my junior year. I had previously been 

heavily involved in computer tech and “entry level” activities like blogging and RSS feed 

reading, and I knew that my future was with electrical engineering and computer science. At the 

time I didn’t know any computer science. I had also had very unfulfilling experiences with 

research before. I knew I wanted to conduct some research in senior year, so I was looking 

around, asking my counselors and teachers for help. One of my closest teachers, Dr. Christoe, 

had a friend working at the Naval Research Lab who needed help with some computer science 

work and was willing to take on a student-intern. I figured it would be a perfect two-birds-one-

stone situation to learn programming and do a high-level computer science project. 

Of course this was a lot more difficult than it sounds, efficient as is it is. Dr. Knies, the 

particle physicist I was working with, worked in the department pertaining to Cold Fusion. I 

went down to Maryland to talk to him face to face. He needed help in some key places in his 

“CR-39” detection project, and we managed to isolate a very specific need, the analysis and 

cataloguing of massive matrices of data. I jumped on the project. The project, although I didn’t 

understand it at the time, was heavily involved in image analysis. I spent a day considering how 

to even go about the thing, considering what a good entry level programming level was. After 

considering python, java, C, and many others, I settled on MATLAB because of its built in 

image analysis package. My dad knew a bit of MATLAB, so I was lucky he could answer my 

questions throughout learning the language. 

Throughout the rest of the summer and into the school year, I worked at home learning 

MATLAB and chipping away at the project. It turned out to be a massive, multistage (10 stages 

in total) problem-solving labyrinth, so there were many times I was incredibly frustrated and 
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exhausted. Even if I knew the thought process and the function types I wanted to use, I didn’t 

know which ones were specific to MATLAB, and I didn’t know how to find them. On top of 

that, syntax errors plagued the project like a virus. On top of learning the MATLAB language, I 

had to learn new mathematics to tackle the problems as well. The data given was a massive 3-D 

matrix, so I had to learn advanced Calculus concepts such as gradients and spatial convolution. 

Additionally, I had to find noise reduction filters for the data, and in two cases create my own 

methods for noise reduction. 

For me, this was as far off the beaten path as I could have gotten. With insufficient skill 

in computer science and mathematics going into this project on top of the requirement to develop 

new methods of image analysis, it was a daunting task. I’ve come out with a strong knowledge of 

computer science and advanced calculus, but not without some serious stumbles along the way. 

For example, after having studied the MATLAB software for quite some time, I found myself at 

a serious block in how to immerse myself in the actual problem solving of the situation. 

Analyzing massive 3D data sets for minute details is not the same as those beginner tutorials you 

find online, after all. I found myself at a loss as for inspiration and direction. When I went to my 

advisor Dr. Christoe, although he couldn’t help with the computer science itself, he sat me down 

and looked me in the eye and told me, “You can’t quit now. Get it done.” Those words really 

stuck with me, blunt as they were, and I really crunched it out. 

Besides the sheer material I flew through in the project, I think I learned a lot about 

greater things and earned a severe insight on science and mathematics. The project showed me 

the power and flexibility of Computer Science, and the sheer applicability of Mathematics. Later 

in the year in Multivariable Calculus I learned the content I had speed-studied before—
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directional derivatives and convolutions and whatnot—and although we sped through it just as 

well, I saw on a much grander scale of what Math was capable of. 

If I could leave future students undertaking science and mathematics projects some 

advice, I would tell them to persevere. When you’re closest to giving up, you’re probably 

actually closest to the breakthrough. Don’t be afraid to ask for help, because sometimes people 

know exactly what you need to know. Follow what you truly want to do, and research turns out 

not to be so difficult after all; in fact, try to make research as relevant to your life as possible to 

keep things interesting. Never give up on your goals! Don’t cut corners, because the “scenic 

route” is worth it in the end. Finally, get sleep. Health is more important than getting ahead a tiny 

increment.
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ii. Research Section 

 Cold Fusion has been an active research field in the quest for next-generation energy.  In 

Andrei Lipson’s CR-39 experiments, oscillating deuterium atoms or other particles were 

accelerated (collective acceleration effect) through an electric field and collided with each other 

to undergo fusion. Another procedure conducted by Roussetski involved the bombardment of 

TiD2 with a Deuteron beam. 

In all these scenarios of fusion research [1][7][9], a significant bottleneck is the detection 

of reactant molecules. The application of CR-39 plastic track detectors in cold fusion 

experiments is vital to detecting and identifying different particles and background/foreground 

separation.The current method of gathering data from CR-39 tracks is to use an electron 

microscope to dissect each individual crater in the x-y and z planes. There has been no way to 

analyze large amounts of CR-39 data in a reasonable time frame. 

In this research, we study 3D trace data from nuclear particle impacts upon CR-39 

detectors to identify craters made by particles.  We utilize a new process, confocal microscopy, 

to gather numerical trace data from the polycarbonate. We propose and apply new approaches 

for detecting and computing several main characteristics, such as depth and incident angle, of the 

impact of the particle.   Our approach and related code serves as a tool for automatically 

classifying the craters and matching them to known collision types and corresponding particles, 

therefore enabling the efficient and accurate processing of large quantities of CR-39 data. 
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Figure 1(A)—3D plot of height data                          Figure 1(B)—Top view of height data 

The first step in our research is to identify the craters.  Since the data is very noisy, 

we need to filter out measurement noise and abnormal crater data (random bumps and 

holes in the substrate that couldn’t be particle collisions). In this step, we first find the 

gradient of the data set using the Sobel operator, a noise resistant convolution kernel that 

generates gradient estimates. 
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where * here denotes the 2-dimensional convolution operation: 

 

The x-coordinate is here defined as increasing in the "right" direction, and the y-coordinate is 

defined as increasing in the "down" direction. At each point in the image, the resulting gradient 

approximations can be combined to give the gradient magnitude, using:

€ 

R = Dx
2

+ Dy
2  

Using this information, we can also calculate the gradient's direction:Theta = arctan(Dy/Dx). 
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Figure 2(A)—Isolated crater gradient 

 

Figure 2(B)—Total gradient results from the Sobel Method 

We can clearly see all the craters in the gradient map.  However, to further identify the 

crater, we need to transform this data set to a binary set. 
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          Figure 3(A)—Binary Gradient Matrix   Figure 3(B)—Edge of Gradient Matrix  

Then, we cut off other noises by discarding those points with gradient values less than a 

certain threshold. In our test, we used 0.5 as the threshold based on our examination of the 

gradient matrix R. This algorithm generates a binary data set that represents the locations of 

the circular craters.  We then further process the data set using the edge() detection 

method to extract all the circles corresponding to each crater.  We use these circles later to 

identify the center and diameter of the impact. 

(1) Before the mean and standard deviation of data matrix Z can be computed, the matrix Z 

must be converted into vectors as functions mean and std are for vectors. 

X=Z(:) 

mean1 = mean(X) 

std1 = std(X) 

(2) All data points outside of a certain number of standard deviations are removed to cut off 

crater data. For this algorithm 1 standard deviation was used. 

B=X(abs(X-mean1)<std1); 

(3) After this we find the mean and standard deviation of B to identify our substrate height. 

 meanB=mean(B) 
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 stdB = std(B) 

It is assumed that the substrate level is within 1 standard deviation of the true mean—this can 

be adjusted later with more data to compare to. 

Numerical Results: 

The mean of vector v=z(:) was calculated to be 54.7070. 

The standard deviation of vector v=z(:) was calculated to be 1.4481. 

After the exclusion algorithm to cut points beyond a standard deviation out, the calculated mean 

of remaining data points was 55.0381.  Thus the substrate base height was found to be 55.0381. 

The second step is to identify key characteristics of each crater.  Again, since the 

data is noisy, special considerations must be taken to remove the abnormal points.  We 

study the Gaussian filter for noise reduction for this purpose.  However, the Gaussian is a 

low pass filter that is effective against high frequency random noise but not effective 

against low frequency system noise like crater imperfection.  

Gaussian filtering uses an isotropic form:  
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To remove both random noise and system noise, we propose a new threshold cut off 

method.  This method proves to be very effective in removing both random and system 

noise. 

cutoffratio=0.6; zc=zeros(sz); 

fori=1:sz(1) 

for j=1:sz(2) 
if z(i,j)>meanB-stdB*cutoffratiozc(i,j)=meanB; 

elsezc(i,j)=z(i,j);end 

  end 

 end 

 

 

 

Figure 5—Custom filter “cutoff” method 
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Based on the noise free cut-off data set, we then find the regional minima using the 

Matlab function imregionalmin().   We successfully found local minima and their related heights 

and depths using this method.  The final data table is omitted due to page limitations. Figure 6 

illustrates the relative depth of each center point found in the center point matrix. 

 

Figure 6—3D Plot of depths in corresponding crater loci 

Next, the Hough Transform is used to identify the center of the surface impact circle.  

However the regular Hough Transform method cannot detect hundreds of imperfect 

circles.  We propose and have implemented a “divide and conquer” Hough Transform 

method.  This method loops through all impact points via relative minima, each time only 

applying Hough Transform to a small surrounding area.  Our results show that all circles 

within the local region were detected by this method. Furthermore, we used an 

accumulator method similar to Hough Transform to detect the radius of the circle and 

compute the cone angle of each crater. 
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Figure 7—Depication of the Hough Transform algorithm 

 

Figure 8—Result of the Hough Transform applied to the whole data set 

It is also important to note that we convolve a 17 x 17 “Mexican Hat” matrix with each 

accumulator to concentrate the highest brightness in the center of gravity. Since the circle we are 
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detecting is not a perfect one, the algorithm may find multiple points in the resultant matrix.  

Thus, we further filter and process these points to find the point with maximal strength—this 

point is considered as the center of the circle. 

 

Figure 9—Mexican Hat kernal 

Figure 10 shows our method for calculating the incident angle.  “h” is the depth of the 

local minimum,  “θ” is the incident angle, and “d” is the distance between the center of impact 

detected by Houghcircle and the local minimum projected onto the surface. 

 

Figure 10—Diagram for trigonometrically calculating incident angle theta. 
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Our diameter algorithm utilizes a custom version of the Hough Transform. Based on the 

binary edge matrix B2, the algorithm sweeps through all nonzero points.  For each point (x, y), it 

computes d = 
22 b)-(y  a)-(x + ; then increases the accumulator acc(i)if | d–r(i) | < 

threshold.We scale the accumulator by dividing each value by its respective r. We then find the 

radius by identifying the r(k) corresponding to the maximum acc(k). This method is shown in 

Fig. 11. 

After finding the radius, we find cone angle through a simple trigonometric calculation: 

 θ= ATAN(radius/depth)  

 

Figure 11(A) and 11(B)—Diameter method 

After computing the main characteristics of the craters, we plotted the results to 

analyze the distribution of depth, cone angle, diameter, and incident angle. 
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 Figure 12(A)—Depth    Figure 12(B)—Incident Angle 

 
       Figure 12(C)—Diameter     Figure 12(D)—Cone Angle 

In conclusion, we used the 3D data from the observed nuclear particle collisions to 

identify and locate craters. The data set contained both random and system noise and one of our 

main goals was to filter out this noise.  The Sobel method for calculating the gradient proved to 

be effective, and the binary matrix extracted from the gradient data matched the location of the 

craters in the original data set.  Our new “cut-off” method was able to remove both random and 

system noise in the original data set.  This made it possible to estimate regional minima and 

depths, thus finding the impact points of the particles.  

Our “divide and conquer” Hough Transform Method was highly effective in detecting 

hundreds of circles and determining the centers of the impact circles.  Our radius detection 
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method was also effective in finding the radiuses of the circles.  Based on those parameters, we 

then calculated the incident angle and cone angle by trigonometry.  Our approach has proved to 

be quite effective, and suitable for automatically processing large amounts of data. 

The overall fitting of the detected points is depicted in Figure 12(G).  The algorithm 

successfully detected all 524 craters in the sample space.  It can be seen that there are still some 

false detections made by the algorithm.  For future research, we will continue to optimize the 

algorithm to improve the detection accuracy.  Furthermore, we need to study the method for 

automatically removing outliers and fixing imperfect or badly shaped impact points. 

Our methodology is represented in graphical format in Figure 13. A typical data point 

output from the method is depicted in Figure 14. 

 
Figure 12(G)—Overlay of the Detected Impact Points on the Original Data 
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Figure 13 – Graphical overview of our methods
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Figure 14—A sample data point; Centr: (381,285); Dia: 20µ; Cone Angle: 72.43°; Inc: Angle: 

41.44°; Dep: 3.17µ 

 

 


