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About Me

I have long been fascinated by math, and more recently by biology. When my high school 

presented the opportunity to participate in research at a local university two years ago, I looked for a 

project that could help me see how the mathematics I learned in the classroom could be applied to help 

us better understand questions in biology.

My advisor found Dr. David Eisenberg’s lab at the Molecular Biology Institute at UCLA, a lab 

studying, among other things, amyloid fibers and Alzheimer's disease. I was introduced to Dr. James 

Stroud, who had developed a method applying Bayes' theorem to data of amyloid fiber formation. With 

James' help, I began working on writing code to create realistic simulations to test and refine the 

method. By testing the method and improving it where possible, we created a method that can be used 

to analyze real data.

When I began working in the lab, I knew next to nothing about Bayes' theorem or amyloid 

fibers. Diving into the project meant learning things from an area of mathematics completely foreign to 

me, and simultaneously attempting to apply it to the real world. With a lot of help from my mentor, I 

came to understand and even contribute to the project.

Mathematics was necessary at every step, from the method itself, to making realistic 

simulations for testing, to evaluating our results. This research has made me see how essential math is. 

Without it, we could not accurately analyze data or understand our results. Participating in this project 

has made math less abstract – it has applications far beyond getting an A in math class. I believe that 

math will be a powerful tool in whatever path I pursue.



The Research

Introduction

My research is focused on developing a more accurate method of analyzing data of amyloid 

fiber formation. Amyloid fibers (Figure 1) form when proteins misfold and bind together, forming fiber 

like structures (Sipe & Cohen, 2000). These fibers are linked to a number of diseases, including 

Alzheimer’s, Parkinson's, Huntington's, amyloidosis and Type II Diabetes (Ross & Poirier, 2004). 

Diseases associated with amyloid deposits, in plaques formed outside of cells or intracellular inclusions 

within, affect millions of people worldwide (Glenner, 1980; Friedrich et al., 2010; Wang, Maji, 

Sawaya, Eisenberg, & Riek, 2008). It is thought that either the fibers themselves or an intermediate on 

the pathway of fiber formation is responsible for the cell death seen with these diseases (Ross & Poirier 

2004; Bucciantini et al. 2002).

  

 Figure 1. Electron microscopy of amyloid fibers.



It is not known exactly how fiber formation proceeds. One prominent hypothesis is that protein 

monomers misfold and slowly aggregate, eventually reaching a critical size, called the nucleus. Once 

the nucleus is formed, its structure allows more protein to add very quickly, growing into fibers. 

Understanding the process by which these fibers forms may help in the discovery of inhibitor 

molecules to stop the reaction, and ultimately, in the development of medications to treat amyloid 

related diseases (Jarrett & Lansbury 1992; Jarrett & Lansbury 1993; Ferrone 1999; Morris et al. 2009).

Amyloid formation is commonly studied through fluorescence assays  (Morris et al. 2009). 

These experiments use a molecule, such as thioflavin T, that emits light, or fluoresces, when binding to 

fibers. Measuring the amount of fluorescence provides a way to measure the relative concentration of 

fiber in a sample. A typical fluorescence experiment begins with protein monomer in solution with 

thioflavin T. Over time, the monomers aggregate. The thioflavin T fluoresces when fibers form. 

Graphing fluorescence versus time produces a logistic function, with a long flat section called the lag 

phase before fibers forms, followed by the signal phase, which involves a steep climb as fibers form 

rapidly after nucleation, and a leveling off after the available protein has been almost completely 

converted to fiber (Figure 2a). 

The time it takes for the first fiber to form, the lag time, is important in relating models of the 

reaction to experimental data, and also in investigating inhibitor molecules to see if they slow down 

fiber formation (Morris et al. 2009).



Figure 2. Thioflavin T fluorescence over time of a fibrillogenesis reaction, showing concentration 
of amyloid fiber. (a) Noiseless reaction, showing the lag phase, or time before fiber is formed, 
consisting of a deterministic phase, in which monomers aggregate, then a stochastic phase, in 
which nucleation occurs. (b) Experimental results of fluorescence assays of amyloid beta, a 
protein related to Alzheimer's disease, showing the range of noise and data anomalies that can 
occur within the same experiment. The three panels show different runs of the experiment.



Traditional methods of analyzing fluorescence data take a percentage, usually 10% or 50%, of 

the maximum fluorescence reached in the reaction, as the lag time. However, limiting conditions like 

low protein concentration or weak fluorescence mean that fluorescence experiments frequently produce 

noisy data that challenge analysis by these methods (Figure 2b). To improve the measurement of lag 

time from noisy fibrillogenesis data, we develop a method that uses recursive Bayesian estimation to 

more accurately analyze the data.

The Method

We use a recursive Bayesian estimation scheme to decide the point of transition between the lag 

phase and the signal phase (Figure 2a). In this scheme, the series of fluorescence measurements is 

converted into a series of probabilities that the reaction is still in the lag phase. Central to the method is 

the use of Bayes’ theorem to calculate the posterior probability pi(H|E) that the ith data point is in the 

lag phase:

p iH∣E =
p iE∣H ⋅ p iH 

p iE 
(Eq 1)

where pi(H) is the prior probability of the hypothesis that the reaction is in the lag phase, pi(E) is the 

probability of getting the data points seen, and pi(E|H) is the probability of getting the data points seen 

given that the reaction is in the lag phase. Bayes' theorem uses the data and our knowledge of the 

reaction to give us a more sensitive calculation of the probability of the hypothesis (that we are in the 

lag phase) given the evidence (the fluorescence data).

pi(H)

The starting prior, pi=0(H), for the first cycle is empirically set to a low value (e.g. 10-4). Using a 

low starting prior gives the method sensitivity for cases where the lag phase is very short. The prior for 

the ith update cycle, pi(H), is the posterior probability from the previous cycle, p i−1H∣E  , multiplied 



by the mathematical constant, e (Euler's number):

p iH  = p i−1H∣E ⋅e (Eq 2)

Although essentially an empirical correction factor, the constant e can be thought to arise from a time-

dependent decay of the probability that time point i is in the experimental phase. This decay is 

equivalent to a time-dependent growth of the probability that time point i is in the lag phase: 

d {pi H }
dt

= ⋅pi H  (Eq 3)

Solving this differential equation to get the new pi(H) gives:

∫ d {pi H }
pi H 

= ⋅∫ dt . (Eq 4)

To satisfy the differential equation, the posterior of the previous cycle, pi-1(H E∣ ), is incorporated into the 

constant of integration:

ln {p iH }= ⋅t  ln {p i−1H∣E} . (Eq 5)

The growth factor Λ is empirically set to 1, directly resulting in the use of e in Equation 2. The value of 

1 is chosen for simplicity although a range of values for Λ produces reasonable performance of the 

method (data not shown). The unit of time in the analysis is the update cycle, making t=1 cycle in 

Equation 5, which then reduces to Equation 2. Empirically, we find that imposing this time-dependent 

change of the posterior, p i−1H∣E  , between update cycles optimizes performance of the method.

pi(E)

The marginal prior, pi(E), in Equation 1 is the probability of observing a value greater than or 

equal to the value vi at time point i given that vi comes from a window composed of a hypothetical lag 

phase combined with an immediately following signal phase of equal length. The limits of this window, 

ξi and ηi, are described below. The probability pi(E) is calculated by first calculating an intermediate 

probability, p'i(E),



p ' i E  =∫V=v i

∞
Pnorm V ∣ 〈v 〉 i ,i

2 dV (Eq 6)

 given that the value vi comes from the normal distribution Pnorm V ∣〈v 〉i ,i
2  that has a mean

〈v 〉i =
∑
j=i

 i

v j

N i

(Eq 7)

and a variance of

i
2 =

∑
j=i

 i

〈v 〉i−v j
2

N i

. (Eq 8)

To prevent outliers and imprecision in estimating p'i(E) from causing the method to prematurely 

detect the lag time, we apply a Chauvenet filter to eliminate outlying data points, and also limit the 

probability pi(E) by testing it against a very low minimum value εmin             (e.g. 10-10):

p iE  = { min if p ' i E  min

p ' iE  otherwise ∣ . (Eq 9)

The window from which pi(E) is calculated has limits set so that the hypothetical lag phase is equal in 

number of data points (before Chauvenet filtering of the lag phase) to the hypothetical signal phase. 

This ensures that the window from which pi(E) is calculated is divided into two phases of equal 

numbers of data points: the hypothetical lag phase and the hypothetical signal phase. Enforcing this 

equality prevents excessively long lag phases from desensitizing the method or excessively long signal 

phases from sensitizing it.

pi(E|H)

The operand pi(E H∣ ) in Equation 1 is the probability of observing the value vi or greater at the 

time point i given the hypothesis that the time point i is in the hypothetical lag phase:



p iE∣H  =∫=v i

∞
PnormV ∣ 〈v 〉lag ,i , lag ,i

2  d  . (Eq 12)

The function Pnorm V ∣〈v 〉lag ,i ,lag , i
2   is the normal distribution function centered at the mean value of 

the hypothetical lag phase,

〈v 〉lag , i =
∑
j=i

i

v j

1i−i

, (Eq 13)

 with a variance equal to that of the lag phase:

lag ,i
2 =

∑
j=i

i

〈v 〉lag ,i−v j
2

1i−i

. (Eq 14)

At the point when p iH∣E   h , where φh is the hard cutoff (e.g. 10-10), the method decides 

that the experiment is well into the signal phase. To estimate the time when the experiment makes the 

transition, a linear regression is applied to the probability series between the hard cutoff point, i=h, and 

the  point, i=s, where  p iH∣E s . The cutoff value φs is the soft cutoff which is set to a relatively 

high probability (typically 0.1). The linear fit uses time as the x-value and pi(H E∣ ) as the y-value, taking 

the x-intercept of this function as the uncorrected lag time, T'.

The uncorrected lag time is expected to be later than the time in the experiment when the first 

fiber appears because noise in the data series masks the signal from very small amounts of fiber. To 

compensate for this overshoot, a correction, C, is subtracted from the uncorrected lag time to give the 

measured lag time T=T '−C :

C =
⋅m

 v h

 h 
1k

, (Eq 15)

where v h  is the average value of a small window (e.g. seven points) around the data point i=h and σlag, h 



is the square root of the variance of the lag phase for data point i=h where the hard cutoff was 

exceeded. The values for k, m, and α are empirically determined from simulated data, with k = 7, m = 

362, and α = 0.9. Although the correction is estimated from simulated data, it improves accuracy of the 

method across the range of simulation conditions and noise levels we tested and thus is expected to 

improve measurements from experimental data.

Figure 3. Simulated reaction and the corresponding probability series used to find point at which 
the reaction has entered the lag phase.

Simulation of Data for Testing

To develop and evaluate the accuracy of our method and compare it to other methods, we create 

a simple polymerization reaction using a COPASI biochemical reaction simulator (Hoops et al. 2006). 

Using this, we created sets of reactions with a wide range of noise levels and a variety of data 

anomalies, similar to data seen in large scale fluorescence data. We then tested our Bayesian method 



and two traditional methods on the data. The traditional methods took 10% and 50% of the maximum 

fluorescence reached as the lag time.

Figure 4. Problematic data types. (a) Different noise levels, with noise levels, expressed as a 
fraction of the maximum signal of the simulated data, of .05 (blue), and .45 (green), and scaled to 
the spread of the data. (b) Example of scaled data, in which noise increases with signal, with a 
noise level of .25. (c) Example of biphasic data in which the first lag phase and pickup is followed 
by another pickup. (d) Example of stochastic data, in which there is no deterministic phase in the 
lag phase.

Evaluation of Methods

The accuracies of the three methods were analyzed using a mean squared difference (MSD) test. 

For the Bayesian method, the real lag time for the yth simulated experiment, t°y, is compared to the lag 

time, Ty , obtained from the method:

MSD =
∑
y=1

Y

t ° y−T y 
2

Y
, (Eq 17)



where Y=100, corresponding to the number of simulated reactions tested for each noise level. For the 

tenth-time and half-time methods, the value t°y in Equation 17 is replaced with the time that the 

noiseless simulated reaction reaches a tenth and half of the maximum value of the series, respectively. 

For each algorithm, the mean of the MSDs for each noise level is plotted in the left hand panel of 

Figure 5 for each data type. 

We also evaluated the three methods using a Kolmogorov-Smirnov (KS) test to determine the 

probability that the distribution of lag times found by each algorithm followed an exponential 

distribution with the decay constant λ. The simulated data were generated from an exponential 

distribution, with each set of generated reactions before adding noise having a p-value of .99 or higher. 

In this test, a fitted deterministic phase length, Td, is subtracted from each lag time of the set. The 

parameters Td  and λ and are obtained from a non-linear least squares fit of the algorithmic lag times to 

an exponential distribution. 

Pexpt °=t  = ⋅e−⋅ t−T d  , (Eq 16)

For each algorithm, the P-value for each noise level is plotted for each data type in the right hand panel 

of figure 5.

Results

The Bayesian algorithm outperformed the other methods for a wide range of noise levels and 

data types (Figure 5).

Discussion

The Bayesian method produced performance superior to current methods of measuring the lag 

time from fluorescence data of amyloid fiber formation. This was true for the error measure as well as 

for the measure for recovering the underlying exponential distribution (Figure 5). This result held for 

normal data, and for the data anomalies tested: scaled, biphasic, and data with a shortened lag phase. 



Figure 5. The Bayesian method outperforms other traditional methods for a wide range of data 
types and noise levels. (a) Mean squared difference between predicted and actual lag times 
(MSD) and (b) Kolmogorov-Smirnov (KS) test results for normal data. (c) MSD levels and (d) KS 
test results for scaled data. (e) MSD levels and (f) KS test results for biphasic data. (g) MSD levels 
and (h) KS test results for data with a shortened deterministic phase.



The improved accuracy of our Bayesian method, particularly in its ability to recover the 

underlying distribution of lag times, will help in fitting fluorescence data to kinetic models of 

fibrillogenesis. The  steady results for the data problems and noise levels suggest that the Bayesian 

algorithm will be robust to the range of anomalies that occur in large scale fluorescence experiments. 

Specifically, this method will be useful for finding the starting values for curve fitting to mass 

concentration in experimental analyses of fibrillogenesis, fitting expressions for the stochastic 

distribution of lag times to extract rate parameters, and calculating rate parameters from analytical 

expressions for the lag time.

The sensitivity of our Bayesian method will make it useful in studying fibrillogenesis 

experimentally. Additionally, since our method is fully autonomous, it will be useful in the processing 

and analysis of high-throughput data in automated settings. Current methods require sampling of both 

initial and final concentration levels, and backtracking to some point (e.g. 10% of maximum), requiring 

the whole data series. Our use of a Bayes'-optimal procedure makes the method ideal for large data sets 

where computational efficiency is crucial.
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