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1 The Story

I was first introduced to the Intel Science Talent Search in ninth grade. I knew

I would have no trouble entering this contest, as I had just completed a research

project in linear algebra that year. I also knew I would not have to think about

the contest for a long while, as it is only open to twelfth graders.

During the summer, I received an invitation from Brian Conrad, a professor

at Stanford University, to discuss a recently formulated research problem in

number theory. Conrad had heard of me from fellow professor Ravi Vakil, who

in turn had witnessed my passion for mathematics at the Berkeley Math Circle.

In the past, Conrad had invited various students to explore the problem; the

latest results, proved by Shravani Mikkilineni [1], had won fourth prize at the

Intel Science Talent Search. However, Mikkilineni had made clear that her work

was not the end of the story by formulating a conjecture—a precise statement

of a result not yet proved. It was this conjecture that Conrad presented to me

at Stanford.

I love working on conjectures. Just as in the various Mathematical Olympi-

ads in which I have participated, the conditions are already set; the challenge

consists in cleverly using the hypotheses of the problem to produce the con-
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jectured conclusion. Number theory, the study of properties of the ordinary

counting numbers 1, 2, 3, . . ., is particularly rich in this type of problems, which

range from puzzles for the general audience to the challenges on the Interna-

tional Mathematical Olympiad to famous conjectures, such as Fermat’s Last

Theorem and the Twin Prime Conjecture, which commonly remain unsolved

for hundreds of years. My instincts told me that Conrad’s problem would not

be one of these enduring conjectures, and eagerly I set to work.

Unfortunately, school was about to start, and I made little progress other

than simplifying some notations that I found more complex than necessary. The

following summer I began working again, using the computer system Mathemat-

ica which I had won through my performance on the Mathematical Olympiad.

After generating and analyzing copious data for two weeks, I could finally write

down the key formula that enabled me to prove Mikkilineni’s conjecture.

My mathematical investigations were still not finished. For weeks there-

after, I wrote down my proofs, carefully searching for ways to simplify them. I

found that the methods that I had invented would work in far more general cir-

cumstances than Mikkilineni had suggested—and I could describe exactly what

these circumstances were. Months later, while preparing a Math Circle talk on

this project, which I thought was complete, I discovered to my surprise that

the main condition could be simplified even further (giving the form (1) below).

By this time, on seeing my results, my professors unanimously opined that this

number theory project was much stronger than the linear algebra project that

I had originally planned to submit to Intel.

2 The Mathematics

Every high school student has seen π = 3.14159 . . . , the ratio of a circle’s cir-

cumference to its diameter, and its two widely used approximate values: 3.14
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and 22/7. The value 3.14 clearly arises from dropping all but the first two dig-

its after the decimal point in the infinite decimal form 3.14159 . . . , but 22/7

is somewhat a mystery: where do 22 and 7 come from? They are clearly not

random; the quotient 3.1428 . . . is within two thousandths of π, much closer

than we would expect from a fraction with denominator only 7.

In general, we have the following problem:

Question 1. If x is an irrational number (one that cannot be written exactly

as a fraction), how can we find the “extraordinary” approximations a/b where

a and b are natural numbers as small as possible while a/b is as close to x as

possible?

For the past 200 years, this question has had a standard answer—the method

of continued fractions. To explain how it works, suppose we are trying to ap-

proximate π. We notice that π is “3 plus something,” and we try to write that

“something” as a fraction with 1 as its numerator:

π = 3.14159 . . . = 3 + 0.14159 . . . = 3 +
1

7.06251 . . .

Here, we can notice that the denominator is very close to 7. Therefore π ≈ 3+ 1
7

which, when simplified, yields the familiar approximation 22/7.

Or, we can treat the denominator as “7 plus something” and repeat the

process:

3 +
1

7.06251 . . .
= 3 +

1

7 + 0.06251 . . .
= 3 +

1

7 +
1

15.99659 . . .

If we approximate the last denominator by 16, we get

π ≈ 3 +
1

7 +
1

16

which simplifies to
355

113
.
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This is a remarkable approximation to π—accurate to 6 decimal places—first

discovered by the Chinese mathematician Zu Chongzhi in the fifth century.

But it is still possible to go on, and in the end we get an infinite continued

fraction for π:

π = 3 +
1

7 +
1

15 +
1

1 +
1

292 +
1

1 +
1

. . .

To save space, mathematicians prefer to write the terms horizontally:

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, . . .].

Stopping this continued fraction at any point gives a fraction that approximates

π. The approximations converge on the true value of π quite fast:

[3] = 3 = 3

[3, 7] =
22

7
= 3.142857142857 . . .

[3, 7, 15] =
333

106
= 3.141509433962 . . .

[3, 7, 15, 1] =
355

113
= 3.141592920353 . . .

[3, 7, 15, 1, 292] =
103993

33102
= 3.141592653011 . . .

[3, 7, 15, 1, 292, 1] =
104348

33215
= 3.141592653921 . . .

π = 3.1415926535897 . . .

Moreover, the approximations to an irrational number x produced by the con-

tinued fraction method are the “best” answers to Question 1 in the following
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sense [2]:

Theorem. Let a/b be an approximation to an irrational number x found by the

continued fraction method. Let c/d be any fraction such that c and d are natural

numbers and d < b. Then a/b is closer to x than c/d is. (In other words, a/b

sets a record of accuracy among fractions with a given denominator size.)

The continued fraction method can be applied to any irrational number and,

as can be seen from the π example, usually yields very random terms. Beautiful

patterns appear, however, if we consider not π but a quadratic irrational, the

square root of a positive non-square integer.

√
3 = [1, 1,2, 1,2, 1,2, 1,2, 1,2, . . .]

√
45 = [6, 1, 2, 2, 2, 1,12, 1, 2, 2, 2, 1,12, . . .]

√
46 = [6, 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1,12, 1, 3, 1, 1, . . .]

The following patterns may be noticed:

1. All of these continued fractions are periodic, having a section of numbers

that repeats over and over again.

2. The only number not part of the repeating pattern is the first number

(green).

3. The last number of the repeating pattern (red) is also the largest number,

and it is twice as big as the first number (green).

4. The terms between these colored numbers (black) have a palindromic pat-

tern, one that reads the same backwards and forwards.

The method of continued fractions described here may be aptly termed the

“Classic Method” for answering Question 1; the most advanced of the properties
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described—the repeating pattern in the terms for a square root—was proved by

Lagrange in 1770. By contrast, the “Dynamic Method,” which I also analyzed

in my Intel project, has only been studied as a solution to Question 1 for the

past five years, though it too has roots dating back to antiquity.

Suppose we want to approximate
√

45. (The Dynamic Method does not

apply to non-quadratic irrationals like π.) Consider this formula:

f(x) =
6x+ 45

x+ 6

Here, 45 is clearly coming from the number whose square root we want. The

two 6’s are both coming from the integer part of the square root; here
√

45 =

6.70820 . . . , and the integer part (the part before the decimal point) is 6.

The f in this method is a function: we can put any number in for x and get

a number out. We start with 6, the previously determined integer part of the

square root, and compute

f(6) =
6 · 6 + 45

6 + 6
=

27

4
.

We then treat f as a dynamical system (this is the origin of the term Dynamic

Method) by feeding the output back in as the input:

f

(
27

4

)
=

114

17

f

(
114

17

)
= etc.

In this way, we get an infinite sequence of fractions:

6
27

4

114

17

161

24
· · ·
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It is not obvious from the definition of the function f whether these fractions

converge to any limit. But given that they do, the limit must be a number that,

plugged into f , gives the same number again, i.e. a solution of

x =
6x+ 45

x+ 6
.

Students with training in algebra are invited to solve this equation and find the

two roots:

x =
√

45 and x = −
√

45.

Because all the fractions are positive, only the positive root is relevant, and we

may conclude (though not rigorously, since we have not proved that the limit

exists) that this method yields a sequence of rational approximations to
√

45.

This process, described for
√

45, will work in general: given any non-square

integer k, with d the integer part of
√
k, repeated application of the function

f(x) =
dx+ k

x+ d
,

with starting point x = d, yields a sequence of fractions that invariably converge

to
√
k. Graphically, this method is shown in Figure 1: the spiral line shuttling

between the curves y = x and y = f(x) converges on their intersection, the red

point (
√
k,
√
k).
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d � x1 x2x3 ...

P1

P2

P3 ...

k

y � x
y � f HxLxi � f i-1HdL

Pi � Hxi,xi+1L

Figure 1: fn(d)→
√
k as n→∞

A distinctive feature of the Dynamic Method is that it is a fast computation.

This is probably evident from the definition, which involves merely applying the

same function f again and again, but the speed can be increased further using

a technique known as repeated squaring. To explain this, suppose we want to

compute 2100. Literally, this means multiplying 2 by itself 100 times, entailing

99 multiplications. But there are faster ways: if we know 250, we can square it

to get 250·2 = 2100. Similarly, if we know 225, we can square it to get 250, and

if we know 212, we can square (thus getting 224) and then multiply by 2 to get

225. Continuing in this way, we obtain a procedure for building 2100 up from

21:

2100 =

((((
22 · 2

)2)2 · 2)2
)2

.

Thus, 7 multiplications (5 squarings and 2 doublings) suffice to compute 2100.

The iterations of the Dynamic Method are amenable to a similar treatment, and

using 7 operations (each representing combining a function either with itself or
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with f) it is possible to extract the 100th approximation to a given square

root. This contrasts with the Classic Method, in which computing the 100th

approximation entails finding 100 terms of the continued fraction, one by one.

If the Dynamic Method is very fast, the question arises of whether it is also

accurate. Specifically:

Question 2. Does the Dynamic Method yield infinitely many of the extraor-

dinary approximations to a square root, as determined by the Classic Method?

That a sequence of approximations converges is not enough for them to be

extraordinary as desired in Question 1. For instance, the fractions

3,
31

10
= 3.1,

314

100
= 3.14,

3141

1000
= 3.141, . . . ,

derived from the decimal expansion of π, clearly converge to π, but their accu-

racy is quite ordinary for their denominator size, and they have nothing of the

succinctness and exceptional accuracy of 22/7 and 355/113.

With the Dynamic Method, the quality of the approximations varies widely

depending on the particular square root, as shown in the following table:
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k Approximations to
√
k (Classic Method and Dynamic Method)

42

6
13

2

162

25

337

52

4206

649

8749

1350

109194

16849

227137

35048

2834838

437425
· · ·

6
13

2

162

25

337

52

4206

649

8749

1350

109194

16849

227137

35048

2834838

437425
· · ·

43

6 7
13

2

46

7

59

9

341

52

400

61

1541

235

1941

296

3482

531

43725

6668

47207

7199
· · ·

6
79

12

990

151

12433

1896

156126

23809

1960543

298980

24619398

3754423

309156577

47145936
· · ·

45

6 7
20

3

47

7

114

17

161

24

2046

305

2207

329

6460

963

15127

2255

36714

5473

51841

7728

658806

98209
· · ·

6
27

4

114

17

161

24

2046

305

8667

1292

36714

5473

51841

7728

658806

98209
· · ·

The simplest type of behavior is shown in the first row, for k = 42: The

Dynamic Method simply duplicates the results of the Classic Method. The

conditions for this behavior to occur were discovered and proved by Rosen,

Shankar, and Thomas in 2006 [3]: it happens if and only if

2d

k − d2

is an integer.

In contrast to this is the behavior for k = 43. Here none of the fractions

in the two rows match except for the trivial first approximation, 6. Moreover,

the numerators and denominators for the Dynamic Method grow much faster

than in any other row of the table, highlighting the fact that they are accurate

without being extraordinary.

My research focused on explaining the type of behavior shown in the row

k = 45. Some but not all of the Classic and Dynamic approximations coincide,
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and moreover they form a peculiar pattern: the matching terms (yellow) occur

in groups of three, separated by three dissimilar terms in the Classic sequence

and one term in the Dynamic sequence. Discovering which square roots behave

in this way was not easy, but in the end I found a formula similar to Rosen,

Shankar, and Thomas’s: if

4d2

k − d2
(1)

is an integer, then infinitely many of the Classic and Dynamic approximations

match, and there is always a repeating pattern similar to that for k = 45. If

(1) is not an integer, on the other hand, the two methods share finitely many

approximations and the Classic ones are distinctly more extraordinary, as in the

case k = 43.
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