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Part I 

 I always loved career day as an elementary student because I was able to share that my 

dad was a rocket scientist. Maybe he was not the astronaut flying into space or sitting in the 

control room, but I believed he had the ‘coolest’ job because he was the engineer – designing 

new space cameras.  The process mesmerized me: my mind could not yet even wrap itself 

around the idea of creating something new. Therefore as I reached the high school level, I fell in 

love with innovation – the idea of creating something new in order to solve some real world 

problem.  

 My passion for innovation was somewhat out of the ordinary because I was facing a 

challenge that was very real for me. At age 5, I was diagnosed with a rare genetic condition that 

results in severe visual impairment. Through my various Google and WebMD queries, I found 

that there were limited answers relating to the diagnosis and treatment of my condition. 

However, as I matured I realized that I did not need to wait for other scientists to find the 

answers: I could find them myself.  

 From there, I jumped in to research with the help of the science research program as well 

as teachers Mr. Kurtz and Ms. Collette to engage in my first research project involving 

computational biology.  I was particularly interested in computational biology because I had 

programed with my dad before and became very interested in intertwining the fields of computer 

science and biomedical research. In this project, I tried to manipulate protein structures involved 

in my particular visual impairment by making mutations on the computer and trying to measure 



the effects on their structure. The project was somewhat successful; however, at my first science 

fair a judge asked an interesting question. She asked “Couldn’t you apply this idea to other 

proteins?” Suddenly, I had realized that I was on the right path to understanding one of the 

fundamental questions in biomedical research: connecting protein structures with function.  

 After several all-night brainstorming sessions, I approached my research teacher Mr. 

Kurtz one morning to present my idea. I said that I wanted to invent a computer program that 

could predict the effects of mutations in disease. Staring at me wide-eyed and confused, my 

teacher flat out told me I was crazy, yet believed in me enough to encourage me to follow my 

goal and start building.  

 For the first year and a half, I was essentially on my own: where my version of a ‘high-

tech’ laboratory extended to my bedroom walls. However, though I did not have a professional 

mentor available, I was able to use my resources and collaborate with various scientists from 

around the United States and around the World. Through this experience I gained various 

insights. In this sense, instead of just having a mentor in one specific field, I was able to get the 

best of an interdisciplinary experience by having various mentors from various different fields. 

By the end of this first period, I had a working prototype of a program that would use mutation 

information in order to infer its functional effects. 

 At this point, I realized that my prototype was ready to become a finished product that the 

scientific community could ultimately benefit from. However, I needed some assistance to make 

this vision become a reality. I had been collaborating with five different labs from across the 

United States and ultimately decided to team up with the Bonneau Lab at NYU as my new 

mentor, Dr. Richard Bonneau, had extensive experience in software development for biomedical 

applications. Together, along with various graduate students, Post-Doctoral Fellows, and 



undergraduate students, we worked together to improve the science behind my program. Finally, 

after almost four years of hard work my goal was realized and my program can make successful 

predictions of the functional effects of mutations at 87% accuracy.  

 

Part II 

The connection between protein structure, function, and disease is critical in improving both 

laboratory research and current approaches to diagnosis and treatment. For instance, in 

engineering new proteins for biomedical and environmental applications, it is necessary to make 

mutations that will modify and optimize the structure of a protein without deteriorating function. 

Further, connecting mutations in genes to phenotypes is a valuable tool in the diagnosis and 

treatment of rare genetic disorders whose associated genes and proteins are not yet characterized. 

Therefore, it is critical to link mutations in proteins with their resulting phenotypes. However, 

the study of protein function in the laboratory is complicated by the absence of tools that predict 

protein structure to function. Thus, researchers are often left testing specific sites in very large 

proteins which is time consuming, expensive, and provides little information regarding the 

function of that protein.  

Computational models have successfully been applied to soluble protein structure models 

toward predicting the effects of mutations on protein function given the ease in accessing soluble 

protein structures in a publicly available database known as the Protein Databank (PDB). 

However, experimental determination and computational modeling of membrane protein 

structures is complicated by their complex interdependence on the membrane environment. 

Nonetheless, understand membrane protein structure and function is essential as these proteins 

comprise over 30% of proteins in the human body and are associated with several genetic 



disorders. It is thus essential to design a system that considers these membrane-protein specific 

features to yield accurate predictions of functional effects due to mutations in membrane 

proteins. The ultimate goal of my research was to build a tool that could clarify this picture for 

researchers where the effects of mutating specific sites in a protein are known (fig. 1).  

 

 

 

Through research and collaborating with other scientists, I found that applying machine 

learning to this problem would be a suitable approach to building this tool. Machine learning 

provides several benefits in the scope of biology by ‘learning’ complex relationships within data 

sets. For example, one method used machine learning to train a classifier that can predict 

whether a site on a protein structure is sensitive to temperature changes. Similarly, a method 

used machine-learning based classifiers to predict the functional effects of mutations in soluble 

(non-membrane) proteins. More so, machine learning provides the ability to adapt and change 

classifier training based on specific features in the problem such as biochemical changes due to 

the mutation, stability of the protein structure, as well as membrane environment features.  

Figure 1 - The search for loss-of-function and silent mutations often involves scanning 
multiple positions (circles) and testing for the desired effect (loss of function or silent). 



Figure 2: Classifier Accuracy 
 Classifier accuracy based on the percentage of 
samples correctly classified during 5x leave-out CV 

Figure 3: ROC Analysis 
ROC analysis for the top 3 SVMs. Steep curves reflect 
a high true positive rate, illustrating a high probability 
of correct classification for each new sample.  

To train classifiers, I gathered a set of 85 

different protein structure and sequence based 

features that could describe over 200 known 

mutation. I trained six different classifiers and 

here I represent the performance of the top three 

performing classifiers (called LIN-all, RBF-seq, 

and RBF-str). Each classifier was evaluated 

using four metrics: accuracy, precision, receiver 

operating characteristic (ROC) curve and area 

under the ROC curve (AUROC). Percentage of instances correctly classified (accuracy in 

prediction) were evaluated using aggregate output statistics from training each model and 

assessed for each class. (Fig. 2).   

 The measures for accuracy and 

precision reflect overall performance of both 

classes (not shown) and total model 

performance. However an essential 

characteristic of SVM training is to 

understand how individual samples 

contribute to overall performance. This is 

achieved using an ROC curve and AUROC.  

The Receiver Operator Characteristic 

evaluates models based on the probability of 

correct vs. incorrect classification using true 
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positive and false positive rates from 5x leave-out CV. Thus, a greater AUROC value reflects a 

higher probability of correct classification; supporting better performance (AUROC for random 

binary predictions equals 0.5). ROC and AUROC analysis was completed for all SVM models, 

as shown in Figure 3. 

 The main objective in developing this method is to not only validate that each classifier 

performs well, but to also build a system that can generate highly-accurate predictions on new 

samples not included in the original training set. A set of 20 new proteins corresponding to 100 

different loss-of-function and neutral mutations was obtained from various literature sources. 

Each sample was then tested with the classifier to test if the classifier’s prediction matched with 

the known functional effect of the given mutation.  

Predictions on new test proteins exceeded the original expected significance for each 

prediction. Based on the original testing, the classifier was expected to make predictions for new 

samples at 0.860 – however, the mean significance of the new test proteins was 0.958 with a 

standard deviation of 0.070. This is critical as it illustrates that the classifier can make accurate 

predictions to samples similar to those in the training set, as well as new samples with different 

characteristics.  

By integrating a combination of sequence- and structure- based features, the best classifier 

(LIN-all) was selected for use with the program. Using the various methods described here, it 

was demonstrated that the protocol with this classifier successfully classifies mutations with a 

top accuracy at 95.8%.  More importantly, testing, training, validation, and individual protein 

analysis are all indicators that LIN-all will not only perform well in classifying new samples that 

are similar to those in the training set, but also to those that expand those original features.  



To date, function-prediction methods optimized for soluble proteins performed with 81% 

accuracy at best. Therefore, this new function-prediction method for membrane proteins 

performs 15% better than top performing methods for soluble proteins. This not only illustrates 

the strength of the machine-learning based algorithm in accurately predicting functional effects, 

but also exhibits that specific structural information as well as selected sequence-based features 

are critical in the prediction of mutations in membrane proteins. Furthermore, despite restrictions 

posed by the membrane environment in general structure prediction, this novel method is highly 

successful in predicting loss-of-function phenotypes.  

The applications of this protocol extend to various research areas, from understanding 

membrane protein structures to interpreting genetic variation in a wide array of genes and 

proteins associated with disease. This protocol can significantly minimize search space for loss-

of-function mutations, thus increasing efficiency in protein engineering, identifying new drug 

targets and studying membrane proteins in vitro and/or in vivo. Further, the ability, with this new 

protocol to classify mutations allows researchers to connect molecular-level changes to the wide 

spectrum of phenotypes observed in genetic disorders, providing new opportunities to improve 

diagnosis and treatment.  By providing access to this newly developed protocol, it is hoped that 

this resource can contribute to current research and open many new opportunities by providing 

novel information regarding the functional effects of mutations in membrane proteins. 
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