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Personal Section

Since I have always loved both math and science, I was eager to integrate the two fields by

conducting a medical research project in applied mathematics. Within the medical field, what in-

spired me to study cancer were the deaths of my great-grandmother and great-aunt, as well as the

death of my former teacher, math team coach, and research mentor, Iftimie Simion, who helped me

come to view math not merely as a subject in school, but rather as a beautiful puzzle. His passion

for mathematics, coupled with his tragic death, inspired me to research cancer with the hope of

improving both tumor detection and treatment. As his former research student, I felt I owed it to

his memory to use the mathematics he taught me in an effort to improve our understanding of the

disease that took his life far too soon.

My research was conducted under the supervision of Dr. James Michaelson, the Scientific

Director at the Laboratory for Quantitative Medicine, in affiliation with Massachusetts General

Hospital and Harvard Medical School. A majority of my research was conducted during a summer

internship with the Research Science Institute (RSI) held at the Massachusetts Institute of Tech-

nology (MIT) in June and July of 2011. I continued to work on my paper and project through

December of 2011.
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My advice for other high school research students would be to enjoy every part of the research

process. Research something you love, and rather than feeling discouraged when you face a chal-

lenge or unexpected result, look at it as an opportunity to learn, grow, and work with even greater

excitement and determination in search of an answer. Rather than only seeing value in the final

result you hope to discover, try to enjoy everything about the process along the way. There is so

much to learn through research besides that final result; the skills and knowledge you gain will

remain with you long afterwards - and may perhaps even come to use when you least expect it.

One of the most valuable aspects of my experiences with high school research, I believe, was

the opportunity to develop a greater understanding and appreciation for the way scientific research

is conducted. Though the process can often be long and challenging, the opportunity to problem-

solve and think critically to answer unsolved real-world questions is simultaneously humbling,

exciting, and incredibly rewarding. Unlike knowledge gained from books and courses, the unique

characteristic of research is an eternal quest for the unknown. And the extraordinary characteristic

of the unknown is the potential to make the world a better place.

Research Section

Abstract

A greater quantitative understanding of tumor growth is essential to improve cancer screening

and treatment. Using a sample of 345 breast cancer patients from California, a novel algorithm was

developed to propose a new mathematical model of tumor growth, utilizing essential information

from the pre-detection period. Concurrently, this study quantified the median time intervals be-

tween metastasis, detection, and mortality by comparing probable time distributions of each event.

To develop an accurate theoretical model of pre-detection growth, an iterative approach of param-

eter optimization was employed. Variations among anatomical locations of metastasis were also

examined. When tumors of all localities were considered together, this study found the median

time between metastasis and detection was 53.1 months and the median time between metastasis
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and mortality was 73.6 months. Perhaps more significantly, the mathematical model developed by

this study offers insight into the patterns of tumor growth prior to the attainment of detectable size.

These findings are critical for the development of more quantitatively precise cancer treatment

regimens and the improvement of various mathematical models of cancer during the pre-detection

period. Such information also underscores the need to motivate more frequent cancer screening

and develop more sensitive technologies to detect tumors of smaller diameters.

1 Introduction

To improve both cancer screening and treatment, a quantitative understanding of tumor growth

is essential [8, 23, 24, 27]. By establishing a novel theoretical model of breast cancer tumor growth,

this study dramatically improves previously established probability models of cancer lethality by

incorporating essential information from the pre-detection period of tumor growth. With this infor-

mation, physicians may be able to administer more effective and quantitatively precise treatment

regimens by basing the intensiveness of therapy directly on the likelihood that patients experi-

ence a lethal metastasis. By quantifying the amount of time prior to mortality among patients with

breast cancer metastases in various locations, the results of this study may also enable physicians

to predict the likelihood of patient survival more precisely over time among victims of breast can-

cer metastasis [9]. Furthermore, by quantifying the duration of time between metastasis onset and

detection, the results of this study suggest a great need to motivate more frequent cancer screening

and to develop more sensitive technologies to detect tumors of smaller diameters.

More generally, tumor growth models might provide an understanding of the factors that nat-

urally retard cancer proliferation, which could be utilized in treatment through molecular growth

control [10, 33]. Additionally, since Lee and Spratt [14] showed that tumor growth rates are ap-

proximately equal to regression and regrowth rates after radiation, hormones, and chemotherapy,

accurate models of tumor growth may allow physicians to predict post-treatment rates of tumor

regression and relapse more reliably.
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1.1 Modeling Cancer and the Probability of Metastasis

With the understanding that individual patterns may vary, previous studies have aimed to model

tumor growth at the population level [38]. As Michaelson indicates, the discrete nature of micro-

scopic biological events gives rise to quantitatively predictable cancer growth and metastasis pat-

terns at the macroscopic level of tumors [2, 16, 18, 19]. Similarly, these quantitative patterns at the

individual level give rise to quantitatively predictable patterns at the population level.

One such pattern is the probability of metastasis with respect to tumor size, which has been

described by Michaelson’s Size-Only Lethality Equation (Equation 1) [2, 18, 19]:

L(D) = 1� e�QD

Z
. (1)

The model predicts the probabilistic risk L of an eventually lethal metastasis as a function of

primary tumor diameter D [2, 18, 19]. Through linear regression of tumor size and lethality data

with respect to a transformation of Equation 1, constants Q and Z were empirically determined to

be 0.0062 and 1.33, respectively [19]. By replacing the variable D with a function D(t) to represent

the size of a primary tumor as a function of time, the probability of metastasis can therefore also

be described by a function of time.

1.2 Modeling Tumor Growth

Since cancer cells reproduce by mitosis, the unbounded growth rate is theoretically exponen-

tial, exhibiting a constant doubling time [32]. The lognormality of tumor growth rates under certain

circumstances reinforces this supposition [5, 30]; however, tumor growth is often poorly fit by log-

arithmic axes [10]. In practice, the exponential model is only accurate for tumors of small sizes

because growth is density-dependent, decelerating as cancer progresses. Early theories about the

cause of this growth deceleration have included apoptosis, cell cycle lengthening, and the body’s

immunological response to cancer [11, 12, 15], whereas more modern theories include the inter-
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related factors of growth inhibitory molecules, quiescence, and vascular and metabolic constraints

on tumor growth [7, 16].

To address rate deceleration in the exponential model (Equation 2), alternatives such as the

logistic model (Equation 3) or the Gompertz model (Equation 4) are often employed, where y0 is

an initial value, k is a rate constant, M is an upper asymptote in the latter two equations, and N

is a constant in Equation 2 [23, 27, 39, 40]. In the case of tumor growth, y0 and M both refer to

tumor size expressed as diameter, volume, or number of cancer cells.
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Applying these equations to mammographic data of the progression of breast cancer tumor

volume with respect to time, Spratt, von Fournier, Spratt, and Weber [28] showed that the logistic

function with N = 1
4 modeled the data most accurately, followed closely by other variations of the

logistic and Gompertz functions. It has also been independently demonstrated that the Gompertz

function is a useful predictor of tumor growth [1, 23, 36, 37].

1.3 Purpose and Rationale

Although such models provide a general understanding of tumor growth during the post-

detection period [3, 6, 36, 37], they may be poor predictors of tumor growth during the pre-

detection period. Furthermore, whereas models from previous studies have quantified tumor growth

using data from mammograms [22, 26, 29, 31], radiograms [25, 35], and physical examinations

[13, 34], measurements obtained directly upon tumor excision can more accurately describe tumor
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growth and improve patient treatment [4]. Using data obtained directly upon tumor excision, this

study proposed a novel mathematical and compuational methodology to model pre-detection tumor

growth and to determine the standard time intervals between metastasis, detection, and mortality

at various cancer sites in the body.

2 Materials and Methods

Data were obtained from a sample of 345 breast cancer patients treated in California from 1956

to 2007, and all analyses were completed by an original algorithm developed in MATLAB. Only

patients who exhibited metastasis and did not experience neoadjuvant treatment were considered.

Since tumors do not become operationally detectable until they reach a diameter of approxi-

mately seven millimeters [17], knowledge of the exact time that a tumor first appears is unattain-

able. It is possible, however, to approximate the time that a metastasis first appears indirectly based

on the size of the primary tumor from which it is derived [2, 18, 19]. Using this information, it is

possible to create a probability distribution to quantify the average likelihood of metastasis for a

sample of n patients over time before tumor excision, which was defined for all patients as time

t0. Comparing this distribution to other probability distributions obtained from the same dataset,

including the range of times of metastasis detection and the range of times of patient mortality, it

is possible to quantify the amount of time required for cancer to grow from a single cell to a tumor

of detectable size and the amount of time metastases may be present in the body before mortality.

Using the algorithm described on the following pages, the durations of time between metasta-

sis, detection, and mortality were quantified both for the general sample and for specific subsets

of patients based on the anatomical locations to which the primary breast tumors metastasized.

Simultaneously, the algorithm solved for the parameters of a novel mathematical model of breast

cancer tumor growth that incorporates essential information concerning tumor size during the pre-

detection period.
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2.1 Probability of Metastasis as a Function of Time

To create the distribution of probable times of metastasis, probability functions L
i

(t) were

calculated from Equation 1 for each patient i. In each equation, the variable D was substituted by

a function D(t) in order to incorporate time rather than size as the independent variable:

L
i

(t) = 1� e�QD(t)Z . (5)

To calculate the probability with respect to time that a primary tumor metastasized before it

was detected and removed, the function D(t) was required to model pre-detection tumor growth.

Since previous models of tumor growth, however, have only incorporated the available data of post-

detection size, a new model was necessary for the purposes of this study. Although the earlier stages

of tumor growth appear more exponential than the latter stages due to the density-dependence fac-

tor, exponential growth would be an imprecise model because it assumes a constant doubling time

(Equation 2). While the initial volume doubling time should be comparable to the cell cycle time

lasting approximately 24 hours, the volume doubling time in a tumor at the time of detection and

excision would be approximately 130 days [17, 20]. The generalized logistic model (Equation 3)

would therefore offer a more reasonable approximation of tumor growth during the pre-detectable

period. Through an iterative process described in Subsection 2.6, the parameters were optimized

to develop a novel model of tumor growth in conjunction with these calculations.

2.2 Probability Distribution of Metastasis Time

For each patient i, the logistic model D(t) was horizontally translated such that time t0 corre-

sponded to the tumor diameter in millimeters upon excision. Thus, each function L
i

(t) traced the

probability of metastasis from the moment that the primary tumor was a single cell to the moment

that the primary tumor was removed at t0. Unlike in previous studies, pathological tumor size,

rather than radiological data, was employed because the measurements obtained from mammo-

grams and x-rays are approximated from tumor shadows, whereas the sizes recorded upon excision
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are directly measured. The individual functions for each patient were then averaged according to

Equation 6 to obtain a mean function L(t), representing the average probability of metastasis with

respect to time before tumor excision:

L(t) =
1

n

nX

i=1

L
i

(t). (6)

Because all patients in the database exhibited a distant recurrence after the primary breast tumor

was removed, the probability that a metastasis occurred before tumor excision was necessarily

100%. Thus, to normalize the function as an average per-patient cumulative distribution of probable

times of tumor metastasis P
Metastasis

(t), the function was multiplied by a constant k, where k =

1
L(0) , according to Equation 7:

P
Metastasis

(t) = kL(t). (7)

All functions were stored as vectors of probability values with indices corresponding to those of

their corresponding time values in separate vectors. Subtracting the average cumulative probability

of metastasis P
Metastasis

at each time value t from the probability at the time value immediately

following, it was possible to obtain a probability function p
Metastasis

(t) representing the likelihood

of metastasis with respect to time in the interval between the two consecutive time values. This

vector included a probability value for each month in the domain before t0.

2.3 Probability Distributions of Detection and Mortality

Probability distributions of metastasis detection times p
Detection

and, if applicable, patient mor-

tality times p
Mortality

were then calculated with respect to time after t0, which was once again

defined as the date of primary tumor excision. Only the 281 patients who had not survived until the

conclusion of data collection were included in calculations involving the duration of time between

metastasis and mortality. Although the database actually reported the duration of time between pri-

mary tumor biopsy, metastasis detection, and patient mortality, the date of primary tumor biopsy
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was taken to be the time of excision t0 because no data were available for the time of excision. For

the purposes of this study, such an assumption was justifiable because the time between biopsy and

excision, which has a mean of 3.4 months, is negligible when compared to the time scale between

metastasis, detection, and mortality [21].

2.4 Deconvolution of the Probability Distributions

The distributions of the duration of time between tumor appearance and detection and between

tumor appearance and patient mortality were calculated according to Equations 8 and 9:

p
DetectionInterval

(t) : p
DetectionInterval

(t
j

� t
i

) = [p
Metastasis

(t
i

)][p
Detection

(t
j

)]; (8)

p
MortalityInterval

(t) : p
MortalityInterval

(t
j

� t
i

) = [p
Metastasis

(t
i

)][p
Mortality

(t
j

)]. (9)

Each element t
j

in the time vector for detection or mortality was subtracted by each element t
i

in the time vector for metastasis. Correspondingly, the probabilities of these time intervals (t
j

� t
i

)

were calculated by multiplying the individual probabilities of t
i

and t
j

to define the new probability

functions, p
DetectionIinterval

(t) (Equation 8) and p
MortalityInterval

(t) (Equation 9).

2.5 Statistical Calculations

Based on these probability distributions, the program was then designed to plot the cumula-

tive distributions of the duration of time between metastasis and detection P
DetectionInterval

(t) or

between metastasis and mortality P
MortalityInterval

(t). The mean time interval was calculated by

adding the products of each time value and its corresponding probability (Equation 10), and the

median was identified by locating the 50th percentile of the cumulative distribution. The standard

deviation was obtained by Equation 11.

µ =
X

tp(t) (10)
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SD =
qX

t2p(t)� µ2 (11)

2.6 Iterative Optimization of Parameters in Logistic Model

When calculating L
i

(t) (Equation 5) to obtain the probability distribution of metastasis times,

D(t) must reflect the size of the primary tumor with respect to time between origin and excision.

Although previous studies have established tumor growth models based on empirical data of tu-

mor size in the post-detection period [3, 6, 28, 36, 37], no empirical knowledge was available

concerning tumor size in this pre-detection period. Thus, to identify the most accurate model for

the purposes of this study, an iterative appraoch was developed to optimize parameters N and k

in the logistic model (Equation 3). Since volume is directly proportional to the number of cells in

a tumor, the logistic model was applied to the volume (Equation 12) and converted to diameter

(Equation 13).

The maximum value M was defined as 1.1 ⇥ 106 mm3, corresponding to 240 cells, since this

value has been established as the theoretical maximum of tumor growth [28]. The initial condition

V0 was set at 10�6 mm3, the volume of a single cell [28].

V (t) =
M

N
p
1 + Ae�Nkt

, A =

✓
M

V0

◆
N

� 1 (12)

D(t) = 2
3

r
3V (t)

4⇡
(13)

To optimize N and k, the algorithm was designed to search for values that, when substituted

into the model and iterated through the process previously described, would result in an overall

median duration of time between origin and detection of a metastasis that was most nearly identi-

cal to the median duration of time that the model would predict between the origin and detection of

a primary tumor. By iterating through a reasonable interval of values for both parameters and min-
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imizing the difference between the two medians that would result from a given pair of parameters,

the most ideal values for N and k in the pre-detection logistic model were determined.

3 Results

3.1 Optimization of Parameters

After iterating through the full domain of N and k, the absolute values of the differences

between the median time interval between origin and detection in the primary tumor and the overall

median time interval between origin and detection in the metastasis were stored in a matrix Z

according to Equation 14:

Z(i, j) = | Median
primary

(k
i

, N
j

)� Median
metastasis

(k
i

, N
j

) | . (14)

Z was then plotted with respect to N and k as a surface plot (Figure 1) to identify the general

effect of varying the values of N and k on the difference between medians.

The global minimum of Z with respect to N and k was then located to determine the opti-

mal pair of parameters for all calculations. As a frame of reference, the four pairs of parameters

resulting in the next smallest Z values were also identified. The mean and median time intervals

between metastasis and detection were then calculated for each pair of parameters to determine the

sensitivity of the results to the selection of any of these parameter pairs (Table 1).

As the mean overall intervals between metastasis and detection for all five pairs of parameters

were all within 0.118 SD of the mean when the optimal pair of parameters, defined by the global

minimum of Z, were used (SD = 47.5 months), it was determined that the parameters k = 0.17

and N = 0.007 were acceptable to be used for all results. Substituting these parameters into

Equation 12, the following model of tumor growth with respect to time t in months was obtained:

V (t) =
1.1⇥ 106 mm3

0.17
p
1 + 110.4e�0.03621t

. (15)
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Figure 1: Surface plot of Z with respect to k 2 [0, 0.35] and N 2 [0, 0.080].

Table 1: Mean and median calculated time intervals between metastasis and detection (with percent
deviations from the results based on the optimal pair of parameters listed in the first row) for the
five pairs of parameters that resulted in the smallest values of Z.

Parameters Results (Months) Deviation
k = 0.17 Median = 53.1 —
N = 0.007 Mean = 64.7 —
Z = 0.0986
k = 0.05 Median = 50.2 5.46%
N = 0.029 Mean = 62.1 4.02%
Z = 0.1753
k = 0.20 Median = 52.8 0.565%
N = 0.006 Mean = 64.5 0.309%
Z = 0.1863
k = 0.03 Median = 46.8 11.9%
N = 0.063 Mean = 59.1 8.66%
Z = 0.1863
k = 0.15 Median = 52.8 0.565%
N = 0.008 Mean = 64.4 0.464%
Z = 0.2055
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Figure 2: P
DetectionInterval

(t): Cumulative dis-
tribution of the overall time interval between
metastasis and detection when all tumor lo-
calities were considered together. Mean: 64.7.
Median: 53.1. SD: 47.5.

Figure 3: P
MortalityInterval

(t): Cumulative dis-
tribution of the overall time interval between
metastasis and mortality when all tumor lo-
calities were considered together. Mean: 83.7.
Median: 73.6. SD: 50.8.

3.2 Time Intervals Between Metastasis, Detection, and Mortality

After executing the algorithm using D(t) defined with k = 0.17 and N = 0.007 (Equations 5

and 15), the cumulative distributions of the duration of time between metastasis and detection

P
DetectionInterval

(t) and between metastasis and mortality P
MortalityInterval

(t) were plotted. Fig-

ures 2 and 3 illustrate these distributions when all tumor localities were considered together.

The mean and median durations of time between tumor appearance, detection, and mortality

were also calculated based on the anatomical locations to which cancer metastasized. Tables 2

and 3 illustrate these mean and median values, where N represents the sample size for each specific

subpopulation of patients whose primary tumor metastasized to the designated location.

3.3 Evaluation of Results

In order to compare the model proposed in this study to existing models of tumor growth, the

model proposed here (1) was plotted on the same set of axes in Figure 4 as the logistic model

(2) proposed by Spratt et al. for post-detection tumor growth [28] and an exponential model (3)
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Table 2: Mean and median time interval between metastasis and detection for specified tumor
localities. Subpopulations marked with a plus sign (+) indicate groups of patients who exhibited a
metastasis in the specified location but who may have also exhibited metastases elsewhere.

Subpopulation Time (Months)
Total Sample (N = 345) Mean: 64.7

Median: 53.1
SD: 47.5

Bone (N = 45) Mean: 66.7
Median: 52.3
SD: 51.4

Bone+ (N = 114) Mean: 68.8
Median: 55.2
SD: 53.2

Brain (N = 8) Mean: 52.0
Median: 48.0
SD: 25.0

Brain and CNS+ (N = 46) Mean: 61.3
Median: 55.3
SD: 36.5

Liver (N = 13) Mean: 67.4
Median: 55.0
SD: 44.9

Liver+ (N = 51) Mean: 67.8
Median: 54.1
SD: 46.5

Lung (N = 42) Mean: 66.9
Median: 59.0
SD: 40.8

Lung+ (N = 112) Mean: 67.1
Median: 57.2
SD: 49.5

Lymph Nodes+ (N = 20) Mean: 70.0
Median: 56.1
SD: 53.8

Marrow+ (N = 6) Mean: 49.7
Median: 35.6
SD: 33.0

Pleura+ (N = 7) Mean: 91.0
Median: 66.2
SD: 75.4

Skin+ (N = 4) Mean: 55.1
Median: 48.0
SD: 40.9
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Table 3: Mean and median time interval between metastasis and mortality for specified tumor
localities. Subpopulations marked with a plus sign (+) indicate groups of patients who exhibited a
metastasis in the specified location but who may have also exhibited metastases elsewhere.

Subpopulation Time (Months)
Total Sample (N = 281) Mean: 83.7

Median: 73.6
SD: 50.8

Bone (N = 35) Mean: 94.1
Median: 84
SD: 55.7

Bone+ (N = 88) Mean: 94.0
Median: 81.9
SD: 60.0

Brain (N = 6) Mean: 58.5
Median: 54.9
SD: 27.0

Brain and CNS+ (N = 38) Mean: 87.7
Median: 78.0
SD: 46.7

Liver (N = 13) Mean: 81.0
Median: 67.8
SD: 48.0

Liver+ (N = 45) Mean: 85.4
Median: 77.6
SD: 45.0

Lung (N = 35) Mean: 95.0
Median: 85.0
SD: 52.8

Lung+ (N = 91) Mean: 90.9
Median: 80.8
SD: 57.6

Lymph Nodes+ (N = 9) Mean: 93.4
Median: 79.3
SD: 51.7

Marrow+ (N = 5) Mean: 67.6
Median: 63.3
SD: 20.8

Pleura+ (N = 2) Mean: 77.9
Median: 76.2
SD: 13.3

Skin+ (N = 3) Mean: 68.2
Median: 42.4
SD: 44.5
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assuming the doubling time at detectable size. To maintain consistency, all three models were

expressed as tumor diameter in millimeters with respect to time after the origin of the tumor in

months. The logistic model proposed here and Spratt’s earlier logistic model were given by Equa-

tions 12 and 13 with M = 1.1 ⇥ 106 mm3 and V0 = 10�6 mm3. For the model proposed here,

N = 0.17 and k = 0.213 months�1 (0.007 days�1), whereas for Spratt’s model, N = 0.25 and

k = 0.098 months�1 (3.22⇥ 10�3 days�1). The exponential model was given by Equation 2 with

y0 defined as the diameter of a single cell (2 3

q
3⇥10�6

4⇡ mm) and k based on the doubling time of

a breast cancer tumor at the time of tumor excision. According to Michaelson et al. [17, 20], the

doubling time of breast carcinomas with respect to tumor volume at the appoximate time of tumor

excision is 130 days. Thus, since tumor volume is proportional to the cube of the diameter, the

doubling time with respect to tumor diameter at the time of tumor excision is approximately 12.8

months (390 days). The rate constant k was therefore chosen to be ln 2
12.8 months�1.

Figure 4: Novel logistic model of tumor growth (1) compared to
Spratt’s logistic model (2) and exponential model (3).

When all three models were compared graphically (Figure 4), the model proposed in this study

(1) adhered relatively closely to the exponential model (3) during the pre-detection period but di-

verged considerably during the post-detection period, as it began to approach the same theoretical

limit of tumor size (2 3

q
3(1.1⇥106)

4⇡ mm) as was approached by Spratt’s logistic model (2) [28]. In-
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terestingly, when the results presented in this study concerning time between metastasis, detection,

and mortality were calculated assuming the exponential model illustrated in Figure 4, the results

were surprisingly similar, presumably because growth during the pre-detection period precedes

significant density-dependent growth deceleration. The logistic model proposed here, however, is

still a considerable improvement over the exponential model because it recognizes that the dou-

bling time is not constant and that tumor growth decelerates with respect to time as it approaches

a theoretical maximum size.

4 Discussion

4.1 Implications

Although previous studies have proposed models of tumor growth based on data obtained

during the post-detection period, this study establishes a new mathematical and computational

methodology to model tumor growth more accurately during the pre-detection period. By present-

ing an improved relation between tumor size and time, the model proposed here may be applied to

other mathematical models of cancer to transform such models from functions of tumor size into

functions of time. When D(t) is given by the model proposed in this study, other cancer models,

such as Michaelson’s Size-Only Lethality Equation (Equation 1) [2, 18, 19], which expresses the

probability of a lethal metastasis as a function of tumor size, may be expressed as a function of

time rather than size (Equation 5). Previously, mathematical models of cancer could be transformed

into functions of time either by assuming exponential growth with some constant doubling time or

by applying some other model of tumor growth based on data obtained during the post-detection

period. The results of this study, however, may improve calculations considerably because the

equation proposed here uses mathematical and computational methods to incorporate information

about tumor size during the pre-detection period and model tumor growth more accurately.

In addition to proposing a tumor growth model that may be applied to improve other mathemat-

ical models of cancer, this study quantified the time interval between metastasis and mortality for
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patients with breast cancer metastases in specific locations (Tables 2 and 3). Physicians may uti-

lize this information, along with the improved probability models of lethal metastasis occurrence,

to predict cancer patients’ survival time more accurately based on primary tumor size and/or the

locations to which primary breast tumors metastasized. This information may improve the math-

ematical precision of current treatment regimens by allowing physicians to base the intensiveness

of therapy directly on the probability and timeline of patient survival.

Furthermore, the results concerning time between metastasis and detection indicate that the

time between the origin of a breast cancer metastasis and its eventual detection is, on average,

well over four years. Because this information suggests that cancer is often detected long after it

first appears, the results of this study demonstrate that there is a great necessity to motivate more

frequent cancer screening and to develop more effective screening technologies to detect tumors

earlier during their progression. Because Michaelson’s Size-Only Equation (Equation 1) expresses

the probability of metastasis as a monatonically increasing function of tumor size [2, 18, 19], if

cancer were detected earlier in its progression, either because of more effective technologies or

greater encouragement of individual screening, breast cancer patients would be considerably less

prone to experiencing an eventually lethal metastasis before their primary tumors are removed.

4.2 Limitations and Further Study

One limitation of this study was that the deconvolution method described in Subsection 2.4

necessarily overestimated the ranges and standard deviations of the distributions of time intervals

between metastasis and detection and between metastasis and mortality. Due to the considerable

individual variation that exists in tumor growth rates, the standard deviations of time between

metastasis, detection, and mortality would in fact be relatively large. However, the reported stan-

dard deviation values were amplified in magnitude by the method of deconvolution presented here

because all possible combinations of time values in the distributions of metastasis and detection

or mortality were compared. This method overestimates the ranges and standard deviations of the

distributions because, in reality, a secondary tumor detected relatively late in the detection distri-
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bution would most likely not be derived from a primary tumor that metastasized relatively early in

the metastasis distribution. Similarly, a secondary tumor detected relatively early would most likely

not be derived from a primary tumor that metastasized relatively late. However, although the ranges

and standard deviations were overestimated, the measures of central tendency, especially medians,

were likely quite reasonable due to the balance of outliers on both ends of the distributions.

Another limitation was that the sample sizes were quite small for several of the subpopulations

of patients with metastases in the specified anatomical locations. In these instances, the findings

presented here are not necessarily representative of the general population of breast cancer patients

exhibiting metastases in the designated locations, and additional data are necessary to obtain more

reliable results. One final limitation of this study was that, in the absence of additional data, the

time of tumor biopsy was also taken as the time of tumor excision. In reality, cancer patients do not

always undergo surgery immediately after their tumors are detected; however, since the mean time

between detection and excision is 3.4 months [21], this assumption likely had a negligible impact

on the results, given the large time scale intrinsic to the calculations of this study.

A possible expansion of this study would be to fit continuous differentiable functions to the

empirically determined cumulative distributions of detection and mortality times so that the prob-

ability distributions would be continuous rather than discretely defined. It may also be desirable

to determine the parameters N and k in the logistic model D(t) by minimizing the average dif-

ference between all percentiles in the distributions of times between origin and detection for the

primary tumor and metastasis, rather than by minimizing only the difference between the medi-

ans of the two distributions. Finally, it may be useful to reconcile the post-detection models of

tumor growth proposed by previous literature with the pre-detection logistic model proposed in

this work, through either linear combination of the models or further addition of parameters. Such

a composite model of tumor growth would be crucial for physicians to predict patients’ probability

of lethality more accurately, enabling them to adjust treatment regimens accordingly.
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5 Conclusions

By establishing a mathematical and compuational method to incorporate information about tu-

mor size during the pre-detection period, this study proposes a novel tumor growth model (Equa-

tion 15) and provides a more accurate quantitative understanding of breast cancer and metastastic

disease. By applying the proposed model to existing mathematical models of cancer, more accu-

rate calculations may be made. In particular, the model proposed here may improve predictions of

the probability with respect to time that breast cancer patients will experience one or more lethal

metastases. These predictions may dramatically improve cancer treatment by allowing physicians

to base intensiveness of therapy directly on patients’ likelihood of experiencing a lethal metastasis.

The results of this study also indicate that the median time between metastasis and detection

is 53.1 months and that the median time between metastasis and mortality is 73.6 months. The

considerable time interval between tumor onset and detection suggests a tremendous need to mo-

tivate more frequent cancer screening and to develop more sensitive technologies to detect tumors

of smaller diameters.

With additional data, the methodology proposed by this study may be used to compare the

time intervals between metastasis, detection, and mortality more reliably based on the anatomical

locations of breast cancer metastasis. This information may allow physicians to improve treatment

considerably by more precisely predicting the amount of time that breast cancer patients will sur-

vive based on the locations to which their primary tumors metastasized. This development would

enable physicians to create more mathematically precise treatment regimens by establishing a po-

tential hierarchy of treatment priority among different sites of breast cancer metastasis.
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