MAKING AN I.M.P.A.C.T
ADVANCING THE COMPUTATION OF NEXT-GENERATION SEQUENCING DATA

Krishan Kania
Part I: My Story

After competing in the Intel Science Talent Search, | am sometimes asked about what | have
gained or learned, aside from specific academic knowledge. Well, in the process, | believe |
have gained clarity pertaining to science in general.

Clarity: I've always thought of biology as the qualitative science-- that biology is applied
chemistry, chemistry is applied physics, and physics is applied mathematics. And yes, from my
research experience this past summer, I've experienced first hand that the tertiary and
qguaternary principles that explain many of our observations in biology do rest in these
guantitative disciplines. However, I've also realized that these "degrees of separation" between
biology and math are meaningless.

In order to accomplish my project goals, | needed to combine number theory, statistics,
genetics, and computer science. My project was never to just observe tissue samples, nor was
it to crunch numbers and perform calculations. It was to do both in a way that allows me to
approach a question in a more comprehensive way than | have ever been exposed to in any of
my previous academic experiences. My research experience has clarified the value (and
necessity) of uniting all scientific and quantitative disciplines when answering a question,
responding to a worthy cause.

Part Il: The Science

INTRODUCTION:

Next-generation sequencing (NGS) has allowed substantial advances in cancer genomics. In
fact, large-scale discovery efforts have propelled the identification of hundreds of cancer-
related genes in recent years. To be truly transforming, however, key cancer-associated
mutations must be profiled systematically in the clinical and translational arena to guide
rational cancer therapeutics. This aim has yet to be achieved on a large scale, mainly because
many methodologies cannot be applied efficiently and reliably on formalin-fixed paraffin
embedded (FFPE) tumor samples that are routinely encountered in the clinic and in archived
tumor banks. This project is a part of the computational effort to develop and apply a robust
and cost-effective methodology, empowered by solution-phase exon capture and massively
parallel next-generation sequencing, by which any FFPE tumor may be characterized for
somatic base mutations and copy number changes in all known cancer genes. With the
programming language “R,” the computational analysis of NGS data for assays running clinical
samples has been redeveloped, automated, and graphically represented. © Moreover, such
analysis, such as copy-number graphs or QC metrics, can be computed at a speed that is 568
times as fast as the traditional, and manual, computational techniques of alternative



methodologies. Furthermore, the program is built with careful considerations to make an even
more comprehensive analysis than before, collectively addressing the two most important
concerns for translating NGS to patient care: (1) speed and (2) confidence.

Ilumina HiSeq 2000
~6 billion reads per run
~600 Gb per run
~8 days per run

~$0.03 per Mb

-
.

Figure 1: The paradigm of IMPACT Personalized Medicine’
(A) Radiology, (B) Pathology, (C) IMPACT

Integrated Mutation Profiling of Actionable Cancer Targets (IMPACT)

IMPACT refers to the assay performed in this study. While NGS assays are generally similar,
there are important differences between IMPACT and competing assays of other labs. IMPACT
takes advantage of capture-based sequencing that targets a subset of the genome using “baits”
that select for specific DNA sequences. Scientists can lightly sequence the entire genome or
exome; this is useful in discovery projects. IMPACT, however, uses baits (Roche NimbleGen) to
only “pull down” the 275 proto-oncogenes, tumor-suppressor genes, and any other genes
involved in cell growth or division (Figure 2). This allows for deep coverage of the genes that
other labs have defined as most relevant to cancer20. By sequencing only targeted regions of
the genome, this technique not only allows for deep coverage of key genes, but also, can detect
low frequency mutations that occur in heterogeneous tumors or impure samples21-24.
Furthermore, capture-based sequencing data can be used to identify structural rearrangements
when at least one of the breakpoints is located in a targeted region25. On average, IMPACT
provides 700-1200 reads of coverage.



ABL1 CBLC DNMT1 FGFR1 IGF1R MDM2 NOTCH2  PNRC1 SPOP

ABL2 CCND1 DNMT3A  FGFR2 IGFBP7 MDM4 NOTCH3 PREX2 SRC
AKT1 CCNE1 DNMT3B  FGFR3 IKBKE MEN1 NOTCH4 PRKARIA  STK11
AKT2 CD798 EGFR FGFR4 IKZF1 MET NPM1 PRKCI SUFU
AKT3 CDC42EP2 EIF4EBP1  FH INSR MITF NRAS PTCH1 TBK1
ALK CDC73 EP300 FLCN IRS1 MLH1 NTRK1 PTEN TEK
ALOX128  CDH1 EPHA3 FLT1 IRS2 MLL NTRK2 PTPN11 TERT
APC CDK4 EPHAS FLT3 JAK1 MLL2 NTRK3 PTPRD TET1
AR CDK6 EPHAG FOXL2 JAK2 ML PAK7 PTPRS TET2
ARAF CDK8 EPHA7 GATA1 JAK3 MLST8 PARK2 RAF1 TGFBR2
ARHGAP26 CDKN2A EPHAB GATA2 JUN MPL PARP1 RARA TMPRSS2
ARID1A CDKN2B EPHB1 GATA3 KDMSC MSH2 PAXS RB1 TNFAIP3
ASXL1 CDKN2C EPHB4 GNA11 KDM6A MSH6 PBRM1 REL TOP1
ATM CEBPA EPHB6 GNAQ KDR MTOR PDGFRA RET TP53
ATRX CHEK1 ERBB2 GNAS KEAP1 MYB PDGFRB RICTOR TP63
AURKA CHEK2 ERBB3 GOLPH3 KT MYC PHOX2B RPTOR TsC1
BAP1 CREBBP ERBB4 GRIN2A KLF6 MYCL1 PIK3C2G RUNX1 TSC2
BCL2L1 CRKL ERG GSK3B KRAS MYCN PIK3CA SDHB TSHR
BCL6 CRLF2 ESR1 HDAC2 LDHA NCOA2 PIK3CB SETD2 VHL
BIRC2 CSFIR ETV1 HIF1A LGR6 NF1 PIK3CD SHQ1 WT1
BRAF CTNNB1 ETVE HMGA2 MAGI2 NF2 PIK3CG SMAD4 YAP1
BRCA1 CYLD EZH2 HNF1A MAP2K1  NFE2L2 PIK3R1 SMARCA4  YES1
BRCA2 DAXX FAM123B HRAS MAP2K2  NFKB1 PIK3R2 SMARCB1

CARD11 DDR2 FAM46C HSPS0AAL MAP2K4  NFKB2 PIK3R3 SMO
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CBLB DIS3 FBXW7 IDH2 MCLL NOTCH1 PLK2 SOX2

Figure 2: IMPACT panel of captured genes.

MATERIALS & METHODS:
2.1 Targeted Sequencing Methodology in IMPACT

Once Formalin-fixed paraffin embedded (FFPE) tumor tissue is obtained, the genomic DNA is
extracted and sheared to a mean fragment length of 200-300 base pairs. Adaptors containing
sequencing primer sites and a unique barcode are ligated to the ends of DNA fragments to
create a sequencing library (approximately 24 barcoded libraries are combined in an equimolar
pool). These libraries are hybridized in solution to biotinylated capture oligonucleotides (baits)
complementary to the exons of 275 cancer genes. Captured DNA is enriched via streptavidin-
coated magnetic beads and eluted. The DNA is then sequenced on one lane of an lllumina
HiSeq 2000. After QC metrics and other metric analysis of lllumina’s fastQ file, the sequence
reads are aligned to the reference human genome, and target genes are examined for
mutations, InDels, copy number alterations, and rearrangements (figure 3).
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Figure 3: Overview of IMPACT
(A) IMPACT uses a hybrid capture method to sequence multiplexed libraries of 12-24 samples. (B) Reads are
aligned to the reference genome and can be visualized by the Integrated Genomics Viewer. (C) This method allows



2.2 Metrics & Quality Control (QC):

To become familiar with the computational side of IMPACT, with the instruction of my mentor,
| performed the following calculations from raw data for ovarian, colorectal, and melanoma
projects of collaborating labs. These experiences would later expand into this project, where |
will go on to develop these metrics into an R-scripted program that relates each calculation
with graphical support:

Metrics:

Cluster Density & Alignment Rate
Base Quality Scores

Insert Size Distributions
Fingerprints

Contamination Ubrary Prep
Capture Specificity ’ “1 ,
Library Complexity ey ;, S
Mean Target Coverage
GC Loess Normalization

Time (Hrs)

Figure 5:

Context:

All metrics are derived from fundamental concepts in biology, chemistry, physics, and statistics.
For example, “Fingerprints” is a metric that checks the alleles of a tumor/normal pair at 42 sites
of single-nucleotide polymorphism (SNP). SNP is a single nucleotide base-pair site where
variation is found in at least 1% of the population®. Specifically, the SNP’s we capture are in
tiling regions, regions of the genome very close to the 275 cancer genes. When 38 out of 42
SNP sites (arbitrary threshold) match between tumor and normal tissue, there is confidence
that the tumor is paired with its matched normal. “Fingerprints” allows an investigator to
identify contamination, sample swamps, and even loss of heterozygosity. GC content is the
percentage of nitrogenous bases on a DNA molecule in a particular region that are either

guanine or cytosine.

GC Content G+C 100
= x
e = T+ G6+C

A GC pair is bound by three hydrogen bonds, compared to AT pairs, which are bound by only
two hydrogen bonds. A high GC-content implies a higher annealing temperature and higher
melting temperature in PCR experiments. Moreover, high GC-content often implies major
technology-related artifacts and biases due to the weakness of sequencing technology. Since
levels GC bias is varied across the genome, the GC effect can be hard to tell apart from the true
signal®’. Even more challenging, the effect is not consistent between repeated experiments, or
even libraries within the same experiment. Unsurprisingly, estimating and directly correcting
for this effect has become a well-established step in protocol design. Normalization is therefore

utano



essential to ensure accuracy, particularly in GC rich regions; the statistical method of choice is
the Loess model. GC Loess Normalization will be incorporated into the R-Scripted program.

Traditionally, the two biggest limitations of metric computation in IMPACT and similar assays
are speed and confidence. In a typical project, these metrics require hours of valuable
technician time to do rudimentary calculations or manipulations. As a corollary, this process is
not as comprehensive as it can be, resulting in more scenarios where mutation calls are
guestionable and thus subject to primer evaluation. Speed and confidence, arguably the two
most important concerns of a clinical setting, will be better addressed with the R-scripted
program.

2.3 Mutation Calling & Primer Evaluation

Following bench work, sequencing, and metric computation, scientists are now ready to
confidently discuss genomic mutations:

Copy-Number Alterations:

IMPACT can determine the pattern of copy-number alterations: the gain/loss of chromosome
arms or focal amplifications and deletions that might range from tens of kilobases to tens of
megabases in size. In a normal genome, across the autosomes, there should be two copies of
every gene, one maternal and one paternal. However, in the cancerous genome there is usually
a gain or loss of one or several exons. Of course, these events have important therapeutic
implications. Copy-number was traditionally visualized in Microsoft Excel in manually generated
graphs depicting the tumor/normal ratio of exon reads between a given tumor and its matched
normal®®. The limitations of this strategy will be revisited in results.

Somatic nucleotide substitutions and small insertion and deletion mutations:

Nucleotide substitution mutations are the most frequent somatic genomic alteration in cancer,
occurring at the rate of about one somatic nucleotide substitution per million nucleotides;
insertion and deletion events are approximately tenfold less common®. The detection of
somatic mutations in cancer requires mutation calling in both the tumor DNA and the matched
normal DNA, coupled with comparison to a reference genome and an assessment of the
statistical significance of the number of counts of the mutation in the cancer sequence and its
absence in the matched normal sequence™.



Primer Evaluation:

The validation of questionable mutation calls require PCR amplification of the region
surrounding the mutation in question followed by sanger sequencing™’.

Next Generation Sequencing
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Figure 6: Suspected substitution event in PIK3CD shown in Integrated
Genomic Viewer (IGV) is confirmed with primer evaluation.

TCGA-13-1481 PIK3CD  p.R184W

helQ ot U o k3545 (nu]])

H . range=chrl:9775637-97765369' pad=03'pad=0strand=
Primer Development. Forwar (iP T EV 1 16CTCNETGGCCCCGAGGCCTATGTGTTCACCTGCATCAACCAGACAGCGGA
A length of 18-25 bases CGTCTETETGACGTGCH
GCCCGTGAGGGCGACCGCGTGAAGAAGCTCATCAACTCACAGATCA
%GC content between 40 and 60% CCGAGTGGGCCGTGTGRCCGEGCTGGCCCTGCCTGCCCCACCCR
. TCCACGAGTTTGACTCCTTGTGCGACCCAGAAGTGAACG \ X ;
Tm (meltlng temperatu re) between 50 and GGCGGCCGCCCGCCGGCAGCAGCTGGGCTGRGAGGCCTGETGCA
o TCGGCTCARACCTGGGGGCCTGGTACCCTGEGGCTECCGARCCE] PIK3CD
60°C GCAGCGAGGTGAGCCCATGCGTGGCCTGCGGCA TLGCT
ACTCCTCAGTCATCCECARGEECCCCTCCCCCAGTGGCATCAGATGGTGTTTGCCAGGTGTCTGTGCATGTGT
No seconda ry priming sites (BLAT) GGGGCTCAACTGAACGTCCCCCCAGGCAAGCTCAACGTGGCAGGATAACCAAGTGGCGTGGGGCATTGGGCAT
i . X . CACTTTCTTCATTCTTICAACARATATTTCCCAGTGTCATTTGTGAACTCCCCAGACCCTACCCTTGGGGGCA
No d|mer|zat|on Capa b|||ty AATAGGCAACCCTGCCCTGTGCCYCAGAACCCCGGGGGGCCTCGAGGGCAGAGGACTGACCTCCCTCCTCCCC

Reverse"—Pﬁmer“: GIJGTCCACCAAGGACGTGCCG

No significant hairpins (> 3 bp)

elting point forward: 59.15°C
Melting point reverse: 60.45°C

Amplicon length: 307
BLAT for repetitive regions: Pass
No SNP's

Figure 7: Choosing the best primer to evaluate the
substitution in PIK3CD

2.4 “R” Package & R-Scripted Programming

R is a programming language widely used among biostaticians and is highly relevant in
bioinformatics (gene expression data, serial analysis of gene expression, etc.). R is a useful tool
for plotting graphics, analyzing data, and fitting data to statistical models. It is open source,
free, and maintained by a team of developers around the world. Traditionally, the metrics,
QC metrics, and copy-number analysis of IMPACT were done on Microsoft Excel; however, they
are now all redeveloped, improved, and automated in R-Studio. R Cookbook, R Graphics
Cookbook, and R in a Nutshell have all been very helpful in writing code and integrating it into
Next-Generation Sequencing assays, including IMPACT313233,
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RESULTS:

To illustrate the performance of the R-scripted program to compute metrics and copy number
alterations, results will be presented for a project to identify biomarkers of metastasis
in colorectal cancer. DNA was sequenced from primary tumors, metastatic tumors, and
matched normal blood from 36 patients. Nevertheless, this program can and should be applied
to enable discovery across virtually all cancers studied with NGS.

3.1 Visualization, Automation, and Development of Metric Calculations
The R-scripted program relates each metric computation to a comprehensible graph that will

quickly allow investigators to match tissues, identify potential contamination, evaluate the
performance of the sequencing technology, and document quality control (figure 8).
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Figure 8: An Automated and more developed QC Metric Computation on colorectal cancer NGS data

(A) Cluster Density & Alignment Score, (B) Capture Specificity, (C) Base Quality Score, (D) Insert Size
Distribution, (E) Fingerprint Matching, (F) Contamination, (G) Estimated Duplication Rate, (H) Estimated Library
Size. These calculations (and graphs) are now automatically computed from raw data with the R-Scripted program
(I). This program also offers previously uncalculated metrics such as mean exon coverage (in addition to mean
target coverage). Most importantly, the program is universally functional across any permutation or combination of
up to 24 tumors/normals/etc. prioritizing speed and automation across virtually all laboratory scenarios encountered
in IMPACT or the other targeted cancer assays in published literature.

3.2 Automated Copy-Number Plotting with “Normal to Normal”, “Tumor to all
Normals”, and “Tumor to Tumor-Median” Capability

IMPACT is run on a diverse set of projects, which include the conventional tumor to normal
comparisons, but also, primary tumor to metastatic tumor to normal comparisons (for
discovery projects on tumor evolution), tumor to all tumor comparisons, and other variations,
which have severely limited automation programs in the past. However, this project, with the
tools of R, is built with the flexibility to approach virtually all variations of NGS on cancerous
tissue.

Furthermore, with the computational power of R, copy-number graphs exist for each normal
compared to all normals, and each tumor compared to all normals. On Microsoft Excel, it would
be possible to make these comparisons, however, this would make an already long process
even longer.



The advantage of comparing normals to all normals is that one can easily identify
contamination or germ line copy-number alterations in the normals. The advantage of
comparing tumors to every normal exists when the tumor to matched normal comparison

Manual output from EV_040_MT/EV_040_N
Microsoft EXCeI: 1 2 3 4 5 6 7 8 9 10 11 12 13 141516 17 18 19 202122X

Normalized Coverage (MT/N)

Genomic Position

Automated and more
informative output

from “R”: EV_040_MT/EV_041_N
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Figure 9: Advantage of Copy-Number Plotting with R compared to competing methodologies

results in a “messy” copy-number graph, where amplifications or deletions are not clear. (This
usually occurs due to machine artifacts during sequencing, differences in DNA quality, or
differences in input size during library preparation). With the R-scripted program, tumor tissue
is automatically compared to not only the matched normal, but also, all other normals, often
times resulting in a cleaner tumor/normal copy-number graph. It is scientifically sound to
compare a given tumor to an unmatched normal because in theory, all normal samples should
have two copies of every exon in the twenty-two autosomes sequenced in IMPACT. If there is
suspicion that there is a germ-line amplification or any contamination in the normal compared
to the given tumor, the investigator can always consult the normal to all normal comparisons.

In figure 9, a traditional pipeline using Microsoft Excel was too messy to provide any meaningful
conclusions for this patient with colorectal cancer. However, with R, it is clear that there is a
EGFR amplification, an actionable cancer target, on the 7" chromosome. The copy-number is
cleaner on R because the program is actually comparing the tumor to all normals in the pool,
rather than just the matched normal, allowing the investigator to choose the most informative
graph. After comparing this “miracle” normal to other normals in the pool, the normal-to-
normal comparison indicates that even though the normal does not match the tumor, it does
not suffer from any autosomal bias, and is perfectly legitimate (Figure 10). In a prospective
setting, detecting the EGFR amplification, with the tumor to all normals comparison and the
added confidence of the normal to all normals comparison, would open important doors to



targeted therapies such as cetuximab, gefitinib, erlotinib, and panitumumab. In addition, in the
event that there are no normals in the pool, the program is prepared to compare the given
tumor to the median exon values across all tumors.

Normal/Normal Ratio
2
|

13 11415 16 17 8 19 20 2122

o - 1 2 3 4 5 6 7 8 9 10 1 12

Figure 10: Relatively quiet copy-number comparison between the normal used in Figure 7 and
another normal in the given pool.

3.3 Comparison to The Cancer Genome Atlas (TCGA)

Interestingly, these computational efforts, compounded with the existing experimental design
of IMPACT, has enabled mutation calling that does not only match, but occasionally, even
surpasses the NGS assay of The Cancer Genome Atlas (TCGA). When frozen and FFPE tissue first
screened by the TCGA** was run on IMPACT, the investigators using IMPACT called all 17
mutations found by TCGA, and 8 additional mutations not found by TCGA. These mutations
were all confirmed with sanger sequencing (primer evaluation).

B C

BRCA2 p.E1143D

IMPACT Calls TCGA Calls

NEKB2 p.R74Q

8 Mutation Calls

Discordant Calls  Concordant Calls

D
Mean Coverage || Mean Coverage
TCGA 7 110
[MPACT 27 409

Figure 11: Comparison with TCGA

A comparison of 6 frozen ovarian tumors sequenced by IMPACT and TCGA revealed that (A) all 17 mutations found

TCGA | 87%

28.1%
18/64

IMPACT
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® IMPACT and TCGA  ® IMPACT only

08

TCGA mutation frequency
L ]

-
" e
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0
0.00 0.20 0.40 0.60 0.80 1.00

IMPACT mutation frequency

by TCGA in IMPACT genes were detected by IMPACT. Additionally, 8 mutations not found by TCGA were

detected by IMPACT, as seen in (B) IGV screenshots. (C) These mutations were at low frequency in both tumors but

(D) detected due to higher coverage.
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DISCUSSION:

Automating the metric computation of NGS has provided an easier transition from the raw data
output of sequencing (lllumina HiSeq 2000 FastQ file) to mutation calling. The programing
language R has served to bridge the gap in this transition, replacing the traditional, and less
robust, approach of Microsoft Excel and the other competing programs. While many labs
performing NGS are not core-facilities, they can still benefit from the computational and
statistical power of a well-scripted program.

Speed: To begin with, for IMPACT, as well as other assays, this project guarantees speed. On
average, running 12 patients (24 tissue samples) on IMPACT implies at least 3 hours behind the
computer or calculator performing metric computation or plotting copy-number graphs. This
process, on average, now takes just 19 seconds with the R-Scripted program. Thus, an
investigator can shift laboratory resources from computation to Time (Hrs)
interpretation, while performing critical quality controls checks

to identify artifacts that could lead to false positive mutation

calls or spurious conclusions.

Figure 12: Average time spent on metric computation "

with R = 19 seconds (CPU = 2.2 GHz, RAM =
4 Gb) W Library Prep W Capture

Biometric Computation & Analysis

Confidence: The R-Scripted program has not only made the

assay faster, but also, more informative. In addition to the traditional metric calculations of the
existing pipeline, the R-Script provides 100% bar plots, average exon coverage, normal to all
normal copy number, and tumor to all normal copy number data. With these additional
resources, labs can be more confident in their calls as they move into Integrated Genomic
Viewer (IGV) and rate mutations. This will also allow for more informed choices when
contemplating primer evaluation on a questionable mutation.

FUTURE WORK:

One important limitation of the R-Scripted program is that the investigator must visually inspect
the copy number graphs and then manually choose the most informative one. The program
produces graphs that compare one tumor to every normal in a given pool. Currently, all graphs
are displayed in the PDF, including those that are not particularly informative. For example, in a
pool of 12 patient samples, the investigator would be looking for the 12 cleanest tumors to
normal graphs from a PDF of 78 graphs. While it is important to preserve this element of
human intuition, | am experimenting with computational methods that can output graphs that
would match visual inspection.
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One method that is currently being tested is a square-adjacent exon calculation: the addition of
the square of the difference in tumor/normal ratio between adjacent exons across all exons,

where the smallest sum relates to the most informative graph.
4655

Z (exon, ,, — exon,)?
n=1

*There are 4656 exons captured with the current version of baits in IMPACT

Taking the square, will exaggerate the sum of graphs with particularly messy copy numbers
more than simply taking the sum of an absolute value of the difference between adjacent
exons. The “R” script could then easily select to output (PDF) only the graph with the smallest
sum in a for-loop for each tumor.

Another option is to segment the copy number data using circular binary segmentation via
DNAcopy, an “R” package developed by BioConductor that has resolved similar issues.

CONCLUSION:

The establishment of the experimental and computational efforts of IMPACT will have
immediate, far-reaching benefits for translational and clinical research and will provide the
foundation for personalized cancer medicine. Systematic profiling of every cancer gene in
tumor DNA from every cancer patient would improve diagnosis and reveal the spectrum of
alterations across tumor types, the presence of mutations with potential therapeutic
implications in unexpected contexts, and their patterns of co-occurrence that might direct
treatment choice. Profiling these same genes retrospectively across a vast collection of clinically
annotated FFPE tumors would enable the discovery of significant oncogenic mutations in rare
or understudied tumor types and the identification of genomic biomarkers exhibiting
correlations with clinical outcomes or phenotypes in every cancer. These efforts collectively
embody the goal to produce better outcomes in cancer patients and make cancer a more
manageable disease.
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