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Personal Section 

From my youngest years, I have always loved math, and spent much of my elementary and 

middle school years with Math Olympiads and Mathcounts, which emphasized creativity and quick 

thinking rather than the procedural methods in school. In these years, I developed an interest in machines 

as well, and particularly enjoyed building model airplanes as part of a small class in our local community 

center. I constructed each plane out of balsa wood, and spent several weeks carefully pinning and gluing 

components together to make different types of planes. The most interesting thing about these planes was 

the simplicity of their power system, as the propellers were simply attached to tightly wound rubber 

bands, whose tension provided the energy needed for flight. Every so often we would have flight 

endurance competitions, and I was always interested in why some types of planes seemed to consistently 

beat others. Young as I was, I did not really have the math and physics background to understand much 

about the details of aeronautics, but flight would remain a subject of constant curiosity.  

In high school, I gained a solid foundation in mathematics and physics, and especially learned a 

lot about numerical methods and differential equation systems from my father, which would prove useful 

in my research project. Still interested in aeronautics, I contacted a couple of professors at Stanford and 

was delighted when Professor Antony Jameson of the Aerospace Computing Lab invited me to attend his 

lab meetings, in which Ph.D. candidates would present their research. I understood little in the beginning, 

but eventually learned enough about the basics of flight to start my own project. After surfing the web for 

a while, I found a problem on maximizing the range of a hang glider subjected to a certain wind current 

and tried to see if I could obtain similar results. After 3 months or so, I found that my results pretty much 

matched up with those of the original authors, though I developed better computational methods and 

found some interesting new results. This investigation helped me develop, test, and refine the trajectory 

optimization methods I applied throughout my research project. Then, inspired by the Solar Impulse 

project and my childhood fascination for high endurance flight, I began the core of my work: optimizing 

the flight of a solar UAV to enable continuous, or theoretically perpetual, flight. I did most of my research 



at home on my laptop, since it was mainly computational in nature. However, I made regular trips to 

Stanford to receive feedback on my work from Ph.D student Manuel Lopez at the Aerospace Computing 

Lab. 

What intrigued me most about my research was the fact that it could be easily applied to real-

world problems in aviation, because as far as I know, detailed optimization of solar aircraft has thus far 

received little attention and existing research on the topic is inadequate. Therefore, my interest in the 

research did not stop once I had finished my work for the Intel competition [1]. As part of the Stanford 

UAV Club, I, along with the graduate students I had consulted throughout my project, began the Stanford 

Solar UAV Project, our goal being to construct a high endurance solar aircraft with complete design and 

trajectory optimization based on my research work. To do this however, I had to update my software 

substantially. Initially, my system determined the smallest battery that could be loaded into the airplane 

while finding the most energy efficient trajectory for the aircraft. However, now I also had to perform 

optimization to determine the ideal design and specifications of this solar aircraft, beyond just minimizing 

the size of the battery. For example, we optimized the wing area, total mass of the plane, aspect ratio, and 

the percentage of the wing area covered with solar panels. I ran a variety of cases on this new model, 

varying the day of year, solar panel efficiency, panel mass density, and the base mass of necessary aircraft 

components. Furthermore, after optimization of the design, I needed to create a system which when given 

the current position, would continually generate the next place for the aircraft to go to continue on the 

optimal trajectory.  

After nearly 6 months of this work, our team has begun prototyping and planning wing designs, 

and we already have done significant research on the batteries and solar panels to use in the UAV. What I 

thought would just be a fun project to keep me occupied for a little while turned into my main focus for 

the past year, and has given me continuous excitement and exploration. If I were to advise other students 

interested in conducting research in mathematics and science, I would tell them that these types of 

projects are of the nature that, with enough drive, you can always find something fascinating to 



investigate. Thus, I would suggest that it is wise to never really have a particular end goal, or if you must 

have goals, simply set several short term goals, because no matter how finished you think you are, there 

will almost always be something left to consider, or something to improve upon. In hindsight, I feel that 

my Intel project is actually quite incomplete, and although my research has progressed significantly since 

then, there is still much more I would like to do. 

Research 

Introduction 

In this paper, I describe the process and results of my study on the flight trajectory optimization of a 

continuously flying solar aircraft. Continuous flight is achieved by cyclic operation, where the trajectory 

is repeated indefinitely, typically every 24 hours. The word continuously is used in the theoretical sense, 

as continuous or perpetual flight is not achievable in practice due to degradation of batteries and aircraft 

components over time.  

The importance of flight trajectory optimization has been recognized in both general aviation and 

space applications [2]. The prevalent class of algorithms for solving these problems are largely sequential 

in nature, where the differential equations that describe flight motion are solved in an inner loop while an 

outer loop performs the optimization of the control variables. These methods can be computationally 

expensive as they require repeated solution of the differential equations for each guess of the control 

variable in addition to calculation of gradients for the optimizer [3]. The algorithm may also terminate if 

the differential equation solver fails at intermediate guesses of the control variables given by the 

optimizer. Also, it is very difficult to enforce constraints on the state variables. For the optimization of 

solar aircraft, these sequential methods face unique challenges because the boundary conditions are not 

only unknown, but are required to be identical due to cyclic operation. Solving the differential equations 

and performing the optimization simultaneously can address these drawbacks [4, 5], but this requires 

good initialization of the state variables. In this research, I built upon a simultaneous solution method 



called orthogonal collocation on finite elements [5] to develop a robust trajectory optimization system 

with an effective initialization strategy.  

The simultaneous method mentioned above can be applied to many flight trajectory optimization 

problems. The application to solar flight is uniquely interesting from an optimal control perspective since 

the available power is time dependent. The design of solar vehicles with batteries that can offer 

continuous flight has seen a lot of interest [6, 7, 8] and the recent cross continental flight of the Solar 

Impulse [9] has marked a major milestone in solar aviation. Here, during the day solar power is used to 

propel the aircraft and to store energy in batteries. The battery energy is then used for continued flight at 

night. Such aircraft offer unique opportunities, especially for unmanned flight, and can be used for 

communications, imagery, surveillance, and assistance during natural disasters. While the design of such 

aircraft has seen a lot of interest, there has been little reported in terms of the trajectory optimization for 

these aircraft. One notable attempt [10] has been made in this regard; however, the battery mass does not 

appear to be considered in their work, results are given for only one scenario, and computational 

performance results are not reported.  

I addressed this gap by developing a reliable and computationally efficient system that can determine 

the optimal trajectory for continuous solar flight. The primary goal is to minimize the mass of the battery 

needed while allowing sufficient energy to make it through the night. To do this, the development of an 

efficient algorithm is critical. After developing and testing this algorithm, I created a detailed 

mathematical model for the solar aircraft. The resulting system allows a user to find the optimal trajectory 

for continuous flight given input parameters such as payload, battery efficiency, altitude limits, latitude, 

day of year, and other aircraft specifications. In addition, limiting cases have also been studied to 

precisely establish the latitude range within which continuous solar flight is theoretically possible.  

I began my research by testing my solution algorithm on a glider range maximization problem 

proposed in [11], which I used as a benchmark for evaluating the method. Solving this problem allowed 

me to make crucial refinements to my initial trajectory optimization system, improving the accuracy and 



computational performance. This paper will only describe the formulation and the results of the solar 

aircraft trajectory optimization problem. Details of the solution method are provided in [1].  

Development of Solar Aircraft Trajectory Optimization Model 

The objective in this problem is to find the smallest battery capacity at which perpetual solar flight 

can be achieved and then chart out the optimal trajectory for the aircraft. This is done by optimizing the 

propeller thrust, battery charging and discharging rates, and the aircraft lift coefficient. The mathematical 

model is synthesized by combining the equations for atmospheric effects [12], flight dynamics [13] solar 

energy conversion [14], and battery operation. The atmospheric effects refer to equations relating air 

density with altitude, which are important since the lift and drag forces depend on air density. The flight 

dynamics equations are the main differential equations that govern the physics of motion. They are 

derived from the free body diagram of the aircraft and relate the state variables (velocity, flight angle, 

altitude, and horizontal displacement) to the thrust control variable. The solar energy conversion 

equations quantify the flow of power from the sun to the propeller and battery as shown in the schematic 

below. 

 Here, power from the sun is attenuated by travel through the atmosphere, resulting in a value for the 

solar flux within the atmosphere (𝐼𝐷). However, as a result of the elevation angle of the sun, only a 

portion of the solar flux (𝑓𝑟) generates electrical power. Then, some of the power produced by the panel 

(𝑃𝑠𝑜𝑙𝑎𝑟) goes to the propeller (𝑃𝑇) while the remaining goes to the battery (𝑃𝑏𝑎𝑡𝐶
). When necessary, 

Fig. 1 Power Flow Chart 



power is discharged from the battery to the propeller (𝑃𝑏𝑎𝑡𝐷
). Finally, the battery operation equation 

contains the differential equation relating the battery energy state variable to the power charging and 

discharging rates.  

 In summary, the profiles of the thrust, lift coefficient, the battery charging and discharging rates are 

optimized and the trajectories of the state variables described above are calculated while minimizing the 

battery size. In this model, the hardware parameters (solar panel mass density (0.840 
𝑘𝑔

𝑚2), battery energy 

density (1260 
𝑘𝐽

𝑘𝑔
), panel efficiency (29.5 %)) are based on currently available technology. The mass of the 

aircraft I consider has 3 components: the airframe mass (136 kg), the solar panel mass (30.24 kg), and the 

battery mass (optimized).   

In my optimization, I minimize the battery energy at sunset to effectively minimize the maximum 

battery capacity and thus the battery mass. However, the point of maximum stored energy occurs slightly 

before sunset. At sunset, the solar flux is zero and in the period leading to sunset, some battery energy is 

used up by the aircraft. Determining the exact point of this maximum storage and then minimizing this 

value is computationally expensive; however, this determination is not necessary. When the energy stored 

at sunset is minimized, so too is the maximum energy stored, thus practically achieving the same 

objective with vastly improved computational performance. The cycle is assumed to be a 24 hour cycle 

and is discretized into finite elements. The values of the control variables (thrust, battery charging and 

discharging rates, lift coefficient) were optimized within each finite element. In addition, to prevent sharp 

changes in the control profiles, the control variables were held constant within each finite element and 

constraints on their variation between finite elements were enforced. The entire set of equations were 

solved with the procedure I developed in the beginning stages of my research and implemented in the 

General Algebraic Modeling System (GAMS) [15].  

 

 



Results and Discussion 

In this section, I will illustrate the effects of key variables such as the altitude limits, day of year, 

latitude, panel efficiency, payload, and battery efficiency on the minimum required battery capacity, 

which is the objective function. Various case studies were performed to this end whose results are shown 

in Table 1 below. I chose a default case (bolded in Table 1) in order to compare against other cases. Each 

case modifies only the indicated parameter from the default, making it easy to establish causal links. The 

minimum amount of energy storage needed at sunset is reported for each case. The solution method is 

quite robust, as the set of diverse cases were solved with ease.  

Table 1: Summary of case studies and results 

Minimum required battery capacity (in kJ) is reported for each case 

1. Altitude Range (m)         Min. Battery Size 

1,000 to 6,000                              11470 kJ 

1,000 to 8,000                              7832 kJ 

1,000 to 10,000                            5943 kJ  

 

2. Day of Year                    Min. Battery Size 

79 (Spring Equinox)                   14039 kJ 

172 (Summer Solstice)               7731 kJ 

180                                              7832 kJ                                  

265 (Fall Equinox)                      13938 kJ 

355  (Winter Solstice)                 20624 kJ 

3. Latitude                           Min. Battery Size 

0°  (Equator)                               13755 kJ 

37° N (San Francisco)               7832  kJ 

4. Solar Panel Efficiency    Min. Battery Size 

22%                                             8025 kJ 

29.5%                                         7832 kJ  

5. Payload (kg)                    Min. Battery Size 

0                                                  7832 kJ 

30                                                10761 kJ 

50                                                13057 kJ          

6. Battery Efficiency          Min. Battery Size 

50%                                            16145 kJ 

75%                                            10242 kJ 

96%                                            7832 kJ 



To understand how variables such as velocity, flight angle, thrust, battery energy, and power usage 

change over the duration of the 24 hour (86400 s) cycle, graphs are shown for the default case (bolded in 

Table 1) in Fig. 2 to 8. 

 

Fig. 2 Power Profiles for Default Case Fig. 3 Zoomed Power Profiles for Default Case 
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Fig. 4 Lift Coefficient vs. Time for Default Case 
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Fig. 5 Thrust vs. Time for Default Case 

Fig. 6 Velocity and Angle for Default Case Fig. 7 Battery Energy vs. Time for Default Case 



Figure 2 is interesting as it shows that the solar 

power available is much greater than that used for 

powering the plane. This is because the default case is 

day 180, close to the summer solstice in San 

Francisco. The power discharge from the battery is 

quite small at night, and is barely visible in Fig. 2. 

Therefore, a zoomed version of Fig. 2 without the 

solar power is shown in Fig. 3. This discharge is so small because the plane has a smooth descent (Fig. 8) 

while providing the minimum required thrust of 5 N. Periods of peak discharge occur before sunrise when 

the plane has hit the lower altitude limit and around sunset to preserve the altitude (Fig. 8). Figures 5 and 

6 show that the flight angle is directly correlated to the thrust control variable. The angle is negative until 

sunrise and then increases as solar power is available. The velocity changes little throughout the flight, 

although it hits a low around sunrise and then increases with thrust and altitude.  

Figure 7 shows the battery energy steadily 

decreasing from sunset to sunrise due to the power 

discharge to the propeller. Since the maximum 

battery energy is minimized, the battery reaches dead 

storage level (indicated by 0 kJ) slightly after 

sunrise, when there is enough solar power to provide 

sufficient thrust. The charging of the battery occurs 

mainly towards the end of the day, as seen in the battery energy chart in Fig. 7. However, I ran some trials 

by forcing an earlier start to the charging and realized that the minimum battery capacity did not change, 

indicating the presence of multiple solutions. The reason for this is simple. As there is so much excess 

solar power available on the default day, which is in the middle of summer, there are multiple charging 

patterns that result in the same objective function. If the model were run on a day with less sunlight, such 

Fig. 9 Battery Energy on Winter Solstice (37° N) 

 Fig. 8 Altitude vs. Time for Default Case 



as the winter solstice, the solver would have far less freedom and charging would begin earlier on in the 

day. Figure 9 shows the battery energy graph when the model is run on the winter solstice. Predictably, 

with less sunlight, the battery must start charging much sooner in the day to ensure that it has sufficient 

energy for the night. As constraints on the model are tightened, the issue of multiple solutions becomes 

far less problematic. However, the solution method performs reliably even if the objective function is flat 

over a range of values.  

Figure 8 shows the altitude decreasing throughout the night to minimize energy use and then 

increasing throughout the day in order to gain potential energy from solar power. Figure 4 shows that the 

lift coefficient is relatively constant except for drops when the upper or lower bounds in altitude are 

reached. At these points, the solar flux is just barely enough to provide sufficient thrust. As the plane 

reaches the upper altitude limit, the lift coefficient is lowered to minimize lift induced drag. As night 

proceeds, the lift coefficient increases to reduce the fall rate, thus minimizing the battery energy 

requirement. Likewise, at the lower altitude limit, the solar flux is just enough to keep the altitude stable, 

so lowering the lift coefficient reduces the drag, thus minimizing battery use. Once sufficient solar flux is 

available, the lift coefficient increases to enable increase in altitude. When the model is optimized with all 

altitude restrictions removed, the two drops in the lift coefficient disappear.  

Case 1 in Table 1 shows the effect of the altitude range on the objective function. As the airplane is 

given more altitude flexibility, the required energy storage steadily decreases. Since the plane is allowed 

to fly higher, it uses the solar energy available in the day to gain altitude. This allows for more room to 

descend in the night and thus less energy needs to be stored in the battery. For Case 2, the objective 

function values match what one would expect, as on the spring and fall equinox there is similar amount of 

sunlight. The summer solstice has maximum sunlight, so minimal energy needs to be stored in the battery. 

In contrast, for the winter solstice the greatest amount of energy needs to be stored. Figure 10 shows that 



a higher percentage of solar power is used on the winter solstice than on the default day (Fig. 2). Case 3 

shows the effect of latitude. The battery energy 

storage needed is lower in San Francisco because the 

default case is the 180th day of the year; therefore, 

solar flux availability drops as we move south to the 

equator. For Case 4, the objective function is larger 

when the panel efficiency drops to 22 % (same as 

Solar Impulse [9]). Cases 5 and 6 show predictably 

that as payload increases or battery efficiency reduces, the needed energy storage increases. The battery 

efficiency study shows a reasonable safety margin, allowing for battery degradation from the default case. 

Investigation of Limiting Cases: Results and Methods 

I also established the zone of feasibility for continuous operation of the solar aircraft. Since the 

availability of solar power is the most important factor, I studied cases on the winter solstice in the 

northern hemisphere, and found that the maximum latitude at which the plane can fly continuously is 

47.5° N, at which the required minimum battery 

capacity is 24918 kJ. All other parameters were kept 

fixed as per the default case shown in Table 1. 

Figure 11 compares the solar power available to the 

solar power used at latitude 47.5° N. Comparing this 

to the graph at latitude 37° N (Fig. 10), we can see 

that the graphs of the power available and the power 

used almost completely overlap in Fig. 11, as the plane is using nearly all of the solar power available for 

both propulsion and storing energy for use at night. 

 At latitudes higher than 47.5° N, solar power is insufficient to sustain continuous flight. Thus, on 

the winter solstice, this airplane would not be able to fly above Seattle, Washington. Regarding solar 

Fig. 10 Power Use at Lat 37° N - Winter Solstice 

Fig. 11 Power Use at Lat 47.5° N - Winter Solstice 



panel efficiency, even at an efficiency as low as 14% with all other parameters kept fixed as per the 

default case, the airplane could remain in the air continuously on the winter solstice at 37° N, thus 

enabling use of cheaper solar panels. 

Computational Results 

The simultaneous method I implemented proved 

robust and computationally efficient for the 

optimization. All the cases described above were 

solved with ease, especially due to enhancements 

made through testing on the glider problem. The 

computational performance of the solar aircraft 

model is reported in Fig. 12. As the number of finite 

elements increases, the degrees of freedom and nonlinear non-zeroes increase; however, even for 500 

finite elements the computation time is only about 26 seconds. Low computation time is important for the 

applicability of my method to larger models and allows for quick readjustment of the trajectory should 

disturbances occur.  

Conclusions and Future Work 

The solution method I implemented for solving optimal control problems has proven to be robust and 

computationally efficient. The solar aircraft optimization runs, in which four control profiles are 

optimized, take less than 30 seconds for most cases, and by using the simultaneous integration and 

optimization method, the drawbacks of repeated integration of the differential equations are avoided.  

The solar aircraft optimization model formulated is also the first comprehensive model that can be 

used in two ways. In the first step, the model can be used to determine the minimum battery capacity 

needed before launch. Following the launch, the model can perform as a control system to ensure that the 

Fig. 12 Computation Time vs. Finite Elements 



flight stays on the optimal trajectory for continuous flight. I hope that this model will be used by future 

researchers to test their solution methods.   

There is much more work that needs to be done. On the solver side, the effect of non-linearities on 

robustness needs to be further investigated. The solar airplane model must be enhanced by accounting for 

environmental factors such as clouds, rain, wind, and humidity. Regarding multiple solutions, the effect 

of additional constraints and limits on the control variable profiles must be evaluated. The current model 

is computationally efficient, but allows for limited motion about the launch point. This is not a major 

problem since the plane rarely reaches speeds above 50 km/h. However, the effect of the earth’s rotation 

on the cycle time as well as Coriolis force effects and solar flux changes for more extensive north-south 

motion should be considered if the range of motion is expected to be wide. The effect of the tilt of the 

solar panel on the solar flux should also be considered in future work, as this could be a factor in take-off 

and landing. Furthermore, it is also important to consider better battery power output models in future 

work. I have recently joined a team of Stanford graduate students to design and build a small solar aircraft 

using the optimization method and plan to further improve the model and the solution algorithm in the 

process. I hope this project will help us evaluate the opportunities and practical limitations of continuous 

solar flight. 

Acknowledgements 

I am very grateful to the members of the Aerospace Computing Lab at Stanford University. I would 

like to specially thank Ph.D. student Manuel Lopez for his feedback and encouragement throughout my 

work. I am also grateful to Professor Antony Jameson, for inviting me to the Aerospace Computing Lab 

meetings and helping me to learn more about aeronautics. I would also like to thank my AP Physics 

teacher, Mr. Charles Williams, for his feedback and support.  

 

 



References 

[1] Balakrishna, Ashwin. "Optimal Control Strategies for Trajectory Optimization with Applications to 

Continuous Solar Flight." 21 June 2014. Web. 21 June 2014. 

<https://drive.google.com/file/d/0B2ri0S2pK4cVRlJWN21UcmRCaEE/edit?usp=sharing>. 

[2] Bulirsch, R., A. Miele, J. Stoer, and K. Well. Optimal Control: Calculus of Variations, Optimal 

Control Theory, and Numerical Methods. Basel: Birkhäuser Verlag, 1993. Print. 

[3] Biegler, Lorenz T., and Ignacio E. Grossmann. "Retrospective on Optimization." Computers & 

Chemical Engineering 28 (2004): 1169-192. Print.  

[4] Betts, John T. Practical Methods for Optimal Control Using Nonlinear Programming. Philadelphia, 

PA: Society for Industrial and Applied Mathematics, 2001. Print.    

[5] Cuthrell, J. E., and L. T. Biegler. "On the Optimization of Differential-algebraic Process Systems." 

AIChE Journal 33.8 (1987): 1257-270. Print.  

[6] Najafi, Yaser. "Design of a High Altitude Long Endurance Solar Powered UAV." Thesis. San Jose 

State University, 2011. Web. 10 Aug. 2013. 

<http://www.engr.sjsu.edu/nikos/MSAE/pdf/Najafi.S11.pdf>.   

[7] Noth, A., R. Siegwart, and W. Engel. "Autonomous Solar UAV for Sustainable Flight.” Advances in 

Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy. Ed. Kimon P. Valavanis. 

N.p.: Springer Verlag, 2007. 377-405. Print.  

[8] Amos, Jonathan. "'Eternal Plane' Returns to Earth." BBC News. BBC, 23 July 2010. Web. 10 Aug. 

2013. <http://www.bbc.co.uk/news/science-environment-10733998>.   

[9] "SOLAR IMPULSE - AROUND THE WORLD IN A SOLAR AIRPLANE." SOLAR IMPULSE - 

AROUND THE WORLD IN A SOLAR AIRPLANE. SOLAR IMPULSE, n.d. Web. 10 Aug. 2013. 

<http://www.solarimpulse.com/>.  



 

[10] Sachs, G., J. Lenz, and F. Holzapfel. "Periodic Optimal Flight of Solar Aircraft with Unlimited 

Endurance Performance." Applied Mathematical Sciences 4.76 (2010): 3761-778. Print.  

[11] Bulirsch, R., E. Nerz, J. Pesch, and O. Von Stryk. "Combining Direct and Indirect Methods in 

Optimal Control: Range Maximization of a Hang Glider." Optimal Control: Calculus of 

Variations, Optimal Control Theory, and Numerical Methods. By R. Bulirsch, A. Miele, J. Stoer, 
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