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Personal Section 

 

In my sophomore year, I took a post-AP class named Computational Physics at 

my school. Given that I was simultaneously enrolled in my first computer science class 

that year, I had very little prior experience to build upon. Nevertheless, I dove headfirst 

into what turned out to be one of my favorite classes ever. 

For my final project, I made a simulator for the behavior of charged particles in 

Wolfram Mathematica, a programming language I had learned for the class. While doing 

so, I stumbled upon Stephen Wolfram’s book, A New Kind of Science. It was full of 

incredible graphics and information that I couldn’t have imagined, and presented to me a 

whole new world of computer science. A New Kind of Science, or NKS, contained a 

systematic study of computability as well as evolving systems such as Turing machines 

and cellular automata. I had never before considered what might be at the intersection 

between mathematics and computer science, and I knew immediately that I wanted to 

learn more. 

That summer, I applied to and was accepted to the Wolfram Science Summer 

School (WSSS) – WSSS2012 was hosted at Curry College in Milton, Massachusetts. At 

WSSS2012, I met Stephen Wolfram, members of the Wolfram Science team, and 

numerous computer science enthusiasts from around the world, all with unique and 

interesting backgrounds. It was after talking to Dr. Wolfram for the first time that I 

decided to study long-distance cellular automata, or LDCA, a field of cellular automata 

that had not been extensively documented before. I began by created a nomenclature for 

LDCA, and started to study their basic characteristics. The people I met at WSSS2012 



provided helpful guidance, as they pointed me in the right direction in a field I had 

limited knowledge about. 

After continuing my project through my junior year, I decided to return to the 

Wolfram Science Summer School the next summer. I was accepted again, and attended 

WSSS2013 at Bentley University, this time in Waltham, Massachusetts. During my 

second summer, I began tackling the challenge of computational universality. After 

deciding on a systematic approach to studying LDCA, I chose to focus on Rule 73 in 

LDCA-1-2 due to its Class 4 behavior. By the end of September, I had made significant 

progress in documenting all of Rule 73’s characteristics, and proving its potential 

universality. 

The 16 months that I spent on my research, while demanding, left me with a 

renewed appreciation for both computer science and mathematics. I came to realize that 

they were not the isolated, self-contained fields that I had learned about in school, but 

rather that they are connected, evolving, and constantly building upon each other. I would 

advise that other high school students with interests in science or mathematics keep this 

in mind. When conducting research, one should not be afraid to learn new things or 

venture out of one’s comfort zone. Fields that may seem alien may ultimately be helpful 

to one’s project.  

 

Research Section 

 

Cellular automata (CA) have been utilized for decades as discrete models of 

physical, mathematical, chemical, and biological systems. The most common form of 



CA, the elementary cellular automaton (ECA), has been studied intensively in the past 

due to its simple form and versatility. However, ECA are constrained to evolve according 

to a neighborhood of adjacent cells, which limits their sampling radius and the 

environments in which that they can be used. 

The purpose of my study was to explore the behavior of one-dimensional CA in 

configurations other than that of ECA. Namely, “long-distance cellular automata” 

(LDCA), a construct that had been described in the past but never studied. In my paper, 

LDCA were described by the notation LDCA-x-y-n, where x and y represent the spacing 

between the cellular automaton’s target cell and its left and right neighbors, and n denotes 

the length of the initial tape for LDCA with tapes of finite size. Additionally, basic 

characteristics of LDCA were explored such as universal behavior, the change in 

prevalence of complexity with varying neighborhoods, and qualitative evolutionary 

behavior as a result of configuration. 

 

The above figure illustrates the layout of the three sampled cells and one output 

cell in an ECA (left), and a corresponding image for the configuration of LDCA-1-2-n 

(right). 

The 2-color, 2-state cellular automaton I studied in the LDCA-1-2 configuration is 

known as “Rule 73” according to Wolfram’s numbering scheme. In the evolution of Rule 

73, each cell is in one of two states {0, 1}, and since the rule is being applied to a LDCA-



1-2 configuration, at each discrete time step every cell synchronously updates itself 

according to the value of itself and its nearest neighbors: F(Ci-1, Ci, Ci+2), where F is the 

following function: 

F(1, 1, 1) = 0  F(1, 1, 0) = 1  F(1, 0, 1) = 0  F(1, 0, 0) = 0 

 

F(0, 1, 1) = 1  F(0, 1, 0) = 0  F(0, 0, 1) = 0  F(0, 0, 0) = 1 

This table depicts the evolutionary substitution “rules” of Rule 73. Rule 73 and 

Rule 109 are equivalent through both left-right and color equivalence. 

 

Interestingly, Rule 73 is equivalent to Rule 109, through both left-right and color 

equivalence, which means that the two rules are identical after either one’s color is 

inverted and evolution is mirrored horizontally. This entails that studying either rule 

implies the exploration of the other. Rule 109 evolves according to the function  

G(Ci-1, Ci, Ci+2), where G is the following function: 

G(1, 1, 1) = 0  G(1, 1, 0) = 1  G(1, 0, 1) = 1  G(1, 0, 0) = 0 

G(0, 1, 1) = 1  G(0, 1, 0) = 1  G(0, 0, 1) = 0  G(0, 0, 0) = 1 

This table depicts the evolutionary substitution “rules” of Rule 109. Rule 109 and 

Rule 73 are equivalent through both left-right and color equivalence. 

 

In order to understand how Rule 73 behaved, I decided to document all of its 

localized structures. I spent a few weeks isolating and categorizing all of Rule 73’s 

gliders, or “particles” as I referred to them, and recorded all possible outcomes between 



particle pairs. There were several particles in Rule 73 that act as the building blocks for 

larger constructs, or “compound particles.” These I called “fundamental particles,” and 

they were the main focus of my exploration. All fundamental particles are organized and 

labeled by velocity and phase shift (or mass), with the mass ranging in value from 0 to 

+6, and representing the number of cells that the background is shifted to the right by the 

presence of the particle. 

Particle Velocity Mass Period Particle Velocity Mass Period 
A 0 0 3 F 1 2 2 
B 0 5 3 Fbar 1 3 4 
C 1/4 1 8 G 1 0 2 
D 2/5 4 5 H 1 3 2 
E 2/5 2 15     

 

Below is a table of all viable collisions between fundamental particles. 

Particle A Particle B  Particle C Particle D Particle E 

A_C B_C C_D D_F E0F 

A_D B_D C_E D0Fbar E1F 

A_E B_E C_F D1Fbar E2F 

A_F B_F C_Fbar D_G E0Fbar 

A0Fbar B0Fbar C_G D_H E1Fbar 

A1Fbar B1Fbar C_H  E2Fbar 

A_G B_G   E0G 

A_H B_H   E1G 

    E2G 

    E_H 

 

After completely characterizing Rule 73 through an investigation of its state 

transition diagrams and evolution (of particles/collisions), I decided to attempt to prove 

that Rule 73 was Turing universal. Universal computational systems are those that are 

theoretically capable of emulating any other system. This means that a singular system 

would be capable of behaving as any other mathematically definable system, which has 



significant implications in computational science. Such systems usually require an 

encoding and decoding process, in order to translate information and behavior.  

The proving of a computational system’s universality is usually done through the 

emulation of another system, previously known to be universal. As a result of the 

Church-Turing Thesis, Turing machines have been defined as universal. (Church’s 

“effective calculability”, Turing’s “computability”, Post’s “canonical systems”, Kleene’s 

“general recursive functions”, and Smullyan’s “elementary formal systems” have all 

resulted with the exact same computational capability. This phenomenon has lead to the 

generally accepted thesis that these systems are capable of carrying out any specifiable 

procedure whatsoever.) Then, in 2004, Cook proved that cyclic tag systems could 

successfully emulate universal Turing machines, and were therefore universal. While 

several cellular automata have been shown or suspected to be universal, the most 

commonly known example is that of the elementary cellular automata Rule 110, which 

was shown to emulate a universal cyclic tag system. 

Among other methods, I attempted to use block emulation to show that Rule 73 

could behave like Rule 110; the emulation of Rule 110 would be enough to prove the 

universality of Rule 73. First I converted Rule 72 in LDCA-1-2 into Rule 20645 in the 

3/2 rule space. Then, I began to use increasingly larger block sizes to find out which 

cellular automata rules that Rule 20645 was capable of emulating. Here we can see a 

diagram for all of the rules in the 3/2 rule space that Rule 20645 emulates up to a block 

size of 16 cells. Each tree of rules represents a different block size, ranging from 0 to 4 

cells on the first row, 5 to 9 cells on the second row, 10 to 13 cells on the third row, and 

14 to 16 on the last row 



 
 

But my block emulation was eventually limited by the processing power of my 

laptop, and so I moved onto searching for universal behavior with particle collisions. I 

attempted to construct a universal neighbor-dependent substitution system. 

Using collision G’G_B’B which emits particles B’B and G, and collision G_B’B 

which emits particle G’G, I was able to construct a system that consists of two different 

substitution rules {{AB  B1C}, {CB  A}}, and plot the behavior of said system in 

which alternating rows of G’G and G are colliding with B’B. 

 



I observed that there are 3 points in total where all the particles that are colliding 

with B’B are of particle type G'G (except for the G that annihilates the B’B at the end), 

and they are all converted at once into Particle G. At those points, the first B’B converted 

3 G’G particles, the second converts 5, and the third converts 7. These “G’G conversion” 

collisions count consecutive odd numbers as the system progresses, in the pattern 3, 5, 7, 

… 2n+1. Additionally, counting the number of collisions between the G’G conversion 

points reveals interesting results, as can be seen in this chronological list of collisions 

where each number represents how many collisions the B’B particle endures at that 

relative location (“*” is a G’G conversion point): 

1 2 1 * 1 2 1 3 1 2 1 * 1 2 3 2 1 4 1 2 3 2 1 * 1 2 3 4 3 2 1 5 1 2 3 4 3 2 1 * … 

However, I then noticed that this string of numbers could be thought of as an 

inorder traversal of a series of binary trees. And, when counting the number of collisions 

in which B’B interacts with k number of particles, I found that the sums are of the form 

2n-k+1. For example, the total number of collisions in which B’B interacts with 1 particle, 

in between G’G conversion points, follows the pattern 2, 4, 8, … 2
n
. 

 
 

I also found that when counting the total number of interactions of any type in 

between the G’G conversion points, one is left with a progression of Eulerian numbers, 



which follows the series, 4, 11, 26, 57, 120, 247, 502, … Interestingly though, the 

interactions between G’G conversion points don’t define the standard Eulerian numbers, 

but instead correspond to the values of the second column (k = 2) of the standard Euler 

Triangle. While this didn’t prove universality in Rule 73, the ability of Rule 73 in LDCA-

1-2 to associate the behaviors of binary trees with Eulerian numbers could provide 

valuable insight to unsolved problems, and lead to future mathematical exploration. 

In future research, it is suggested that the compound particles of Rule 73 be 

studied in more detail, so that a functioning neighbor-dependent substitution system 

might be generated. With more complex particles, the behavior of their collisions may be 

diverse enough that a defined set of rules can be used to evolve or simplify a string of 

particles. This would verify that a neighbor-dependent substitution system could emulate 

other universal systems.  

And, the block emulation of Rule 73 as Rule 20645 in the 3/2 rule space will be 

more feasible to study in the future. While the scope of this study was limited by 

computational constraints, it is likely that future attempts at proving the universality of 

Rule 73 could make more progress with the block emulation of Rule 20645 with further 

code optimization and improved hardware.  

Focusing mainly on purely Class 4 behavior in LDCA-1-2, my exploration found 

that Rule 73 could potentially be Turing universal through the emulation of a cyclic tag 

system, and began to explore the applications of LDCA. My project also paved the way 

for future exploration of LDCA with larger neighborhoods, and illustrated a connection 

between the mathematics of binary trees and Eulerian numbers that may provide insight 

into unsolved problems. 


