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1 Personal

When I was in the third grade, ten years ago, my mother constantly felt dizzy and tired. She

�nally sought medical attention and her blood was drawn for testing, but it wasn't until a week

later that she was told that her hemoglobin levels were so low that she had to go to the hospital

immediately. After a stressful series of months following some procedures, including many more

blood draws from my anemic mother, she recovered and was able to return to her normal activities.

The stress involved in my mother's experience began my family's personal crusade to create

non-invasive, instant blood analysis. After my sister's research regarding the use of 
uorescence to

determine iron de�ciency, I became fascinated with the other optical properties of blood we could

leverage to conduct a wider range of tests.

I was very fortunate in my research journey in that my math and science curricula at school

paralleled the knowledge I needed to complete my project. Just as I had learned the meaning of

e and log in Pre-Calculus, I began exploring the Beer-Lambert law, a simple exponential function

describing how light permeates any material, which I applied to blood. The summer after I'd

learned the wave-particle duality of light in AP Physics B, I investigated how light scatters when

it encounters a surface in a liquid, for example, a red blood cell suspended in plasma. By the time

I was learning multi-variable calculus, I was using six dimensional modeling to succinctly illustrate

the many factors which contribute to a person's hemoglobin and hematocrit levels.

While I was blessed with an understanding of the math and science concepts my project required,

I was not nearly as lucky when it came to research resources. My research path strays from

convention in that by the time my paper was completed, I had collected no data. Testing theories

regarding ways to improve medical devices is tedious, requiring a tremendous amount of time,

money, energy, and generally support from an academic institution in the form of IRB approval.

In spite of my e�ort, I was unable to generate such support. I made up for this lack of academic

interest by creating a solid foundation for my theories and representing my �ndings in compelling
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graphs and geometric models. While not nearly as concrete as working with real data from real

patients, the theoretical data used in my paper was su�cient to convincingly convey my �ndings.

This research journey has taught me so many di�erent lessons, but there are two I consider

most important. First, I learned the value of being inquisitive over lunch with my mentor and

father. While outlining the layout of my paper and happily munching away on ribs, the �gures and

numbers swirled in my head, and I realized I was getting all of the di�erent parameters we were

keeping track of (SpO2, Hgb, Hct, etc.) confused. I remember asking "Wait, in Figure 11, is the

percentSat 100% or 0%?" to which my father replied "That is the right question to be asking." In

that moment, we realized that the phenomena we were trying to describe needed to be represented

in six dimensions, not just three. This key �nding is reported in the �nal section of my paper.

Second, I learned that the STEM �elds actually allow for academic 
exibility. My peers have

informed me that the humanities are ever popular because "there's more than one right answer," so

you can never be wrong. By contrast, in math and science classes, there's always a correct answer

and, more often than not, an incorrect answer. In learning about methods of non-invasive blood

analysis, I've learned that the room for creativity in science is not in the answer itself , but in the

method of �nding that answer. Approaching the same question from di�erent angles to �nd new

paths to higher levels of knowledge is exactly what research is about. I believe it is this kind of

mental gymnastics that will keep me hooked on STEM for the rest of my life.

2 Introduction

We are building a Hemometer, a low cost device which uses light instead of needles to measure

two components of a blood panel: Hematocrit fraction (Hct) and Hemoglobin concentration (Hgb).

Such a device has many uses: home health monitoring, blood bank pre-screening, etc., but our

primary focus is to develop a device which can detect low hemoglobin levels in expectant mothers.

Measuring Hemoglobin by observing how blood transmits light is a well developed idea. The

`Hemoglobin Color Scale' (HCS) [5], which consists of putting blood on paper and comparing it to

a color card, is a recent e�ort which illustrates the di�culties inherent in a colorimetric approach.

Results di�ered substantially between lab and �eld testing [6]. HCS's inventors listed what they

viewed as the key issues in moving HCS from the lab to the �eld [7].

1. Inadequate or excessive blood

2. Reading the results too soon or too late (beyond the limit of two minutes)

3. Poor lighting

4. Holding the scale at the wrong angle
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According to HCS's inventors, "when the tests were repeated under supervision and these faults

were avoided: 95% of readings were within 1 g
dl
of the reference measurements, and 97% within 1:5 g

dl

Anaemia screening showed 96% sensitivity and 86% speci�city. Clinical judgement of pallor was

frequently wrong, whereas the scale gave the correct diagnosis in more than 97% of cases."

When we started our research, this gave us a great deal of hope, since we believed that issues

1 and 2 arose because HCS was invasive and that issues 3 and 4 arose because HCS was manual.

As such, we felt that we could address these issues by extending existing non-invasive, automatic,

colorimetric approaches. Though these methods introduce issues of their own, we believe that

many of these challenges can be overcome by creating a more comprehensive model of blood. In

this paper, we develop the mathematical model required to make our Hemometer work by reviewing

several existing representations of how raw blood interacts with light, and extending one of them

to develop a model based on intuitions from 3D Geometry.

3 Prior Work

3.1 Pulse Oximetery

There are many mathematical models of how blood interacts with light [8]. One of the oldest

is to simply assume that blood absorbs light and so O.D.tot consists of one term: O.D.absorption.

O.D.absorption is governed by the Beer-Lambert law which tells us that light intensity through a

homogeneous medium drops exponentially both with distance and with concentration of absorbers.

By way of example, suppose a red LED is shining through a vial �lled with red dye. The Beer

Lambert law tells us that if the dye concentration triples, the intensity will drop by a factor of

8. Similarly if the vial diameter is tripled, the intensity will also drop by a factor of 8. This is

expressed by:

O:D:tot = ln

�
Io
I

�
= �ln

�
I

Io

�
= O:D:Absorption = �cD (1)

where

� O:D:tot is Total Optical Density

� Io is the incident light intensity (light entering the sample)

� I is the transmitted light intensity (light exiting the sample)

� � is the absorption coe�cient and is dependent on wavelength �

� c is the concentration of the absorbent

� D is the optical path length of the sample
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Though Beer-Lambert rather crudely models blood as a red dye (with no light scattering cell

surfaces), Pulse Oximetry practitioners are able to use it to non-invasively determine Blood's SpO2

concentration with just two additional equations. First, they equate the pulsatile light intensity

(systolicIntensity/diastolicIntensity) transmitted through the �nger to I/Io, so

ln(
I

Io
) = ln(

systolicIntensity

diastolicIndentisty
) = �ln(Io

I
) = �O:D:tot(�;D; c) (2)

Second, they note that the ratio of two optical densities at two di�erent wavelengths (typically

red (e.g. 660 nm) and infrared (e.g. 940 nm) creates a number that is both independent of `D' and

proportional to SpO2 (Dissolved Blood Oxygen). This second equation is called `Ratio of Ratios."

Again, note that `R' is independent of `D'.

R(c) =
O:D:tot(Red;D; c)

O:D:tot(Infrared;D; c)
(3)

3.2 Twersky [4]

Though modeling blood as a red dye is good enough for Pulse Oximetry's SpO2 concentration

measurements, it does not model Hemoglobin concentration or Hematocrit fraction well. More

accurate models require representing blood as a solution which absorbs and scatters light. [9]

Steinke compared O.D.tot measurements made through whole blood in a lab to three di�erent

mathematical models. The �rst, Twersky [4], was based on electro-magnetic wave theory. The

second, Zdrojkowski [10], was based on photon di�usion theory. The third, Loewinger [11], used a

\semi-empirical" theory. Twersky's model matched experimental data best. This was corroborated

later by De Kock and Tarassenko[12].

Twersky's basic model extends the absorption model described above by adding a scattering

term.

O:D:tot = O:D:absorption� log10(celltocellscattering + incoherentscattering) (4)

where

� O:D:absorption = �cD

� celltocellscattering = 10�aDH(1�H)

� incoherentscattering = q(1� 10�aDH(1�H))

Substituting gives

O:D:tot = �cD � log10[10
�aDH(1�H) + q(1� 10�aDH(1�H))] (5)
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where

� a = a constant dependent upon particle size, nHb (hemoglobin index of refraction), nplasma

(plasma index of refraction), and �.

� H=fractional Hematocrit

� q = a constant dependent upon particle size, nHb, nplasma, �, and the photodetector aperture

angle.

3.3 Steinke[3]

Steinke introduced a `backscattering' version of this equation:

O:D:tot = mH � log10[(1� q)10�� + q10��] (6)

where

� � = aDH(1�H)

� � = 2q0maDH 1�H
2m+aD(1�H)

� q0 = is a parameter of the particular design which couples absorbance and scattering and

depends on � and the spectral properties of the LED. It varies between 0 and 1.

� mH \replaces �cD"(our emphasis) . In a Table II footnote, Steinke also notes that he assumes

H = cHb=( 35g
100ml

).

The H = cHb=( 35g
100ml

) (our emphasis) constraint was maintained by Steinke in his lab work

and allowed him to report O.D.tot a function of a single variable.
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Figure 1: Steinke's equations are reproduced for 940 nm light through a 1.61 mm cuvette �lled
with de-oxygenated dog's blood. The linear absorption term is in black. The scattering term is in
red and the sum of the two equations, O.D.tot, is in green. This �gure was generated by a Python
program using Steinke's models and extinction coe�cients from Prahl [13].

3.3.1 Jello Balls as a Model for Scattering

As an aside, note that the scattering portion is symmetric. A thought experiment using a beaker

of water (modeling plasma) and a handful of small red Jello balls (modeling blood cells) can help

us see why. If we shine a light through a beaker containing just water, we get a Beer-Lambert's law

response. Suppose we add one small red Jello ball. Some of the light will scatter away, decreasing

output intensity, and thus increasing O.D.tot. As we add more balls, eventually we hit a point

where the beaker is full, composed of half Jello and half water. The only way we can add more

balls to a full beaker is if we squeeze them in, causing the water in the beaker to spill over the top.

This has two e�ects. First, it reduces the water volume between the balls; second, it reduces the

total surface area that refracts light. As a result, O.D.tot starts to decrease. On this side of the

curve, the model is not how light bounces o� the surface of the Jello balls in water, but how light

bounces o� the surface of water balls in Jello. Eventually we have 100% Jello and Beer-Lambert

behavior again. This thought experiment was con�rmed by Loewinger who noted that at H=1,

packed cells obeyed Beer's law.
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3.4 Jeon [2]

Jeon and Yoon combined Steinke's invasive blood measurement work with a non-invasive pulse

oximeter-like probe and noted that the scattering portion of Twersky's model looks like a parabola

if D is small enough. By using a parabolic approximation and incorporating Steinke's c = 35H

assumption, both Jeon and Yoon created the closed form solution for R shown below.

R(�1; �2) =

AC(�1)
DC(�1)

AC(�2)
DC(�2)

=
35�(�1) + k(�1)a(�1)H(1�H)

35�(�2) + k(�2)a(�2)H(1�H)
(7)

where

� AC(�) = pulsatile component of the waveform at wavelength �

� DC(�) = nonpulsatile component of the waveform at wavelength �

� � = wavelength - 569, 660, 805, 904, and 975 were used

� � = extinction coe�cient

� k = value depends on the optical design of the system

� a = shape function of red blood cells

� H= hematocrit

As Jeon notes and as the �gures generated by our Python model (below) show, the parabolic

approximation works best for smallD and worsens for largerD. This brings forth a critical question:

How large should we estimate D to be? Jeon estimates it to be smaller than 0.05 mm.
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Figure 2: As Jeon notes, the parabolic approximation works best for small D and worsens for
larger D.

4 c 6= 35H

Now, though Steinke's lab work set c = 35H, and Jeon carried this forward as a constraint in

her work, Hemoglobin concentration is not really equal to 35 times Hematocrit (that's why we have

Blood Panels). So suppose we abandon the c = 35H simpli�cation and just treated Hgb and Hct

as two independent variables? After all, as Steinke notes: \The interesting feature of [equation 5],

as mentioned by Lipowsky [14], is that it essentially resolves the total O.D. into two distinct parts.

The �rst term �cD is a Beer's Law expression for the absorption by the hemoglobin in the cells,

and the second term describes the attenuation of light due to scattering. Hence, according to this

equation, the absorption and scattering of light can be treated as two independent processes."

In that case, we can move from an algebraic view of the data to a 3D geometric view by just

\folding out" either Steinke's Figure I or any of Jeon's diagrams.
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Figure 3: Here, Hct and Hgb are on the x and y axes respectively and O.D.tot is on the z axis.
The thick blue line on the �gure's surface shows where Hgb = 35�Hct. Data comes from the
parameters reported in Steinke [3] and Jeon [2].

At this point, we must di�erentiate the three projections onto each of the three planes.

� The �rst is the projection onto the surface of the Hgb/O.D.tot plane at constant Hct. This

is just the straight line Beer-Lambert absorption term.

� The second is the projection of the surface onto the Hct/O.D.tot plane at constant Hgb. This

is just the parabolic scattering term.

� The third is the projection of the surface onto the Hgb/Hct plane at constant O.D.tot. Though

parabolic, it is not the same as the parabolic Hct/O.D.tot projection. It is this last class of

projections that we examine in the next section.
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5 Geometric Method to Determine Hgb and Hct from two O.D.tot

measurements and D

We can use D and these surfaces' projections on the Hgb/Hct plane to determine Hgb and Hct

using just two O.D.tot measurements without the c = 35H simpli�cation. We demonstrate this

visually below using Steinke's backscattering formula plus the Standard Beer-Lambert absorption

formula (without the c = 35H simpli�cation).

O:D:tot = �cD � log[(1� q)10�� + q10��] (8)

where

� � = absorption coe�cient

� c = concentration of the absorbent

� D = optical path length of the sample

� q = a constant dependent upon particle size, nHb (hemoglobin index of refraction), nplasma

(plasma index of refraction), � and the photodetector aperture angle.

� � = aDH(1�H)

� � = 2q0maD H(1�H)
2m+aD(1�H)

� q0 = a parameter of the particular design which couples absorbance and scattering

and depends on � and the spectral properties of the LED. It varies between 0 and 1.

� H = fractional Hematocrit
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First, we create two 3d surfaces (Figure 4) by plotting equation 8 with Hct and Hgb on the

independent axes (x, y) and O.D.tot on the dependent (z) axis for wavelengths �1 (880 nm) and

�2 (660 nm) with D = 0.05 mm and SpO2 = 100%. Note that every interrogation wavelength (�)

will have its own associated 3d surface.

Figure 4: O.D.tot at 880 and 660 nm, D = 0.05 mm, SpO2 = 100%

Second, we note that \IsoDensity" curves are created when each 3D surface is cut with planes

at speci�c O.D.tots.

Figure 5: Each curve describes all valid Hgb, Hct values associated with given O.D.tot at a
speci�c �. As in Figure 4, the c = 35H line is in blue.
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Third, we project a particular (measured) O.D.tot 1 to form curve 1 from the surface associated

with �1 and a particular (measured) O.D.tot 2 to form curve 2 from the surface associated with �2

into the Hgb/Hct plane. Several such projections are shown for each � in Figure 6. Note however,

that when there is a single measurement on a single subject, only one isodensity curve is generated

per � per subject. For the sake of this example, we will assume that the 880 nm orange isodensity

curve and the 660 nm red isodensity curve are generated.

Figure 6: As D is increased, the isodensity curves here become wider just as shown above in 3.4
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Finally, we overlay the planes on one another. Due to the dual nature of scattering discussed in

Section 3.3.1, there are potentially two points of intersection. The spots where contours intersect

are the Hgb, Hct values that satisfy both curves. Again, for the sake of this example, this is where

the orange and red isodensity curves intersect, at about Hct = 0.4, 0.6 and Hgb = 4 g
dl . Note that

neither dual number predicted by the constraint 0:4� 35 = 14:8 g
dl or 0:6� 35 = 21 g

dl is the same

as the number at the these intersections. Although more analysis needs to be done, we suspect

that the correct Hct value to pick is the one closest to the c = 35H line. Critically, Hgb aliases to

the same value for both points.

Figure 7: The spots where contours intersect are the Hgb, Hct values that satisfy both curves.
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6 Analytical Method to Determine Hgb and Hct from two O.D.tot

measurements and `D'

If we use Jeon's parabolic approximation for the scattering term at small D, but keep the Beer-

Lambert absorption term:

O:D:tot(�) = �(�)cD +H(1�H)k(�)a(�)D (9)

We can create a closed form solution for Hgb and Hct in terms of two O.D.tot measurements and

D by �rst re-casting the equation in standard quadratic form:

c =
H(H � 1)k(�)a(�)D

�(�)D
+

O:D:tot(�)

�(�)D
(10)

Then dividing out D in the �rst term:

c =
H(H � 1)k(�)a(�)

�(�)
+

O:D:tot(�)

�(�)D
(11)

and recognizing that where the parabolas intersect for two di�erent wavelengths, the values of c

are equal:

H(H � 1)
k(�1)a(�1)

�(�1)
+

O:D:tot(�1)

�(�1)D
= H(H � 1)

k(�2)a(�2)

�(�2)
+

O:D:tot(�2)

�(�2)D
(12)

We can solve this quadratic equation �rst by regrouping

0 =

�
k(�1)a(�1)

�(�1)
� k(�2)a(�2)

�(�2)

�
H(H � 1) +

O:D:tot(�1)

�(�1)D
� O:D:tot(�2)

�(�2)D
(13)

and note that the roots of y = ax2 + bx+ c are x = �b�
p
b24ac

2a , but when �b = a

x =
a�

p
a2 � 4ac

2a
=

1

2
�
r

1

4
� c

a
(14)

Giving us the closed form solution

H =
1

2
�
s

1

4
�
�
O:D:tot(�1)

�(�1)KD
� O:D:tot(�2)

�(�2)KD

�
(15)

where

K =
k(�1)a(�1)

�(�1)
� k(�2)a(�2)

�(�2)
(16)

Once we have H, we can obtain c from equation 11.
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6.1 Elimination of `D'

If equation 15 could be coaxed into a linear form, we could just take another O.D.tot measurement,

and eliminate D in the usual way.

Unfortunately, as Figure 8 shows, members of this class of function do not intersect.

Figure 8: H = 1
2 +

q
1
4 � K1

D
where K1 =

�
O:D:tot(�1)
�(�1)K

� O:D:tot(�2)
�(�2)K

�
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7 Method

We created our initial models in Python using the equations and constants reported in

Steinke [3], Jeon [2] and Yoon [1]. We validated our models by visually comparing our generated

pictures to the ones they reported. We discovered that the extinction coe�cients varied signi�cantly

between those reported by Steinke and Prahl, so we used those from Prahl. In addition, Jeon did

not report data for 569 nm, so we used 805 nm (another isobestic wavelength) which was reported

in our analysis. Jeon did not report values for their `a' parameter, so we deduced them from their

reported values of k and D in two steps. First we measured ODmaxes by hand as the maximum

values in Jeon [2] which should correspond to 50% Hct. Next, we noted:

O:D:scat = kaDH(1�H) (17)

so at 50% Hct,

O:D:max = kaD(:5)(1� :5) (18)

so

a = 4
O:D:max

k �D
(19)

Jeon does not say whether equation 18 uses Hb or HbO2 parameters. We assumed HbO2. We

then averaged the a's using the ODmaxes from all of Jeon's graphs compared the a's we calculated

with those reported by Steinke.

� Jeon a Avg= 13.28, a Deviation = 6.35 percent, Steinke a = 12.92

� Jeon a Avg= 12.23, a Deviation = 4.57 percent, Steinke1986 a = 12.08

� Jeon a Avg= 10.81, a Deviation = 3.82 percent, Steinke1986 a = 10.71

� Jeon a Avg= 8.61, a Deviation = 0.91 percent, Steinke1986 a = 8.46

The primary purpose of this exercise and of reproducing the prior work's Figures (e.g. sections

3.3 and 3.4) was to verify that Steinke and Jeon's models had been copied faithfully into the Python

program.
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8 Results and Analysis

8.1 DataCube

Modeling O.D.tot as a function of 5 dependent variables

O:D:tot(Hgb;Hct; �;D; percentSat)1 (20)

enabled us to use a datacube-style data analysis approach to gain geometric insights from various

projections of O.D.tot's 6-dimensional surface. In particular:

� Same interface for all models: As shown, we parameterizedO:D:tot(Hgb;Hct; �;D; percentSat)

with Steinke's model, Jeon's model and various combinations of the two. In fact, Hgb and

Hct do not even need to be independent. It is su�cient that O.D.tot is simply a function of

its passed parameters.

� Functional Model Assumption: Since O.D.tot is modeled as a function, setting some pa-

rameters constant (e.g. using a particular �) will not cause contours to overlap. Among

other things, this means that we believe we have all parameters necessary to characterize the

problem.

� E�ect of � and D on the \Two O.D.tot and D" method: If the two �s are close together,

we can expect greater measurement error. As D is increased, the Isodensity curves become

wider just as shown in the \Jeon" section.

� \Ratio of Ratios:" for Hgb and Hct at 660/940 nm - Jeon estimates arterial dilation during a

heartbeat to be less than several percent of 0.3-1.5 mm or less than 0.05 mm. The change at

50% Hct (the peak of the parabola) from D=.05 to D=.10 is about 1 gm
dl

or about 6%. The

error is less on either side of 50% Hct. This should bound worst case error.

� \Ratio of Ratios:" for Hgb and Hct at isobestic points: Yoon and Jeon use isosbestic wave-

length in 4 out of 5 of the ratios (R569/660, R569/805, R569/940, R569/975, R805/940) to

predict Hgb. Although they do not report data for their key isosbestic wavelength, 569 nm,

they do report data for another isosbestic wavelenght, 805 nm. Surfaces of ratios of R660/805,

R880/805, and R940/805 and also D dependent and the variations at 50% are about the same

as R660/940.

1In this model, we treat Hgb (Hemoglobin concentration) as one independent variable and percentSat (the degree
to which the Hemoglobin is saturated with Oxygen) as another. Parameters such as extinction coe�cient were treated
as functions of these independent variables and we considered two percentSat values: 0% (Hgb) and 100% (HgbO2)
in our analysis.
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� SpO2 has a dramatic e�ect on \Ratio of Ratios" analysis - This tells us that whatever mod-

el we employ, it probably makes sense to include an oxygen saturation component (or its

Pulseoximeter proxy (e.g. R660/940)).

� \Intersection of Ratios" at isosbestic points: We could not use the intersection method to

predict Hgb and Hct using ratio of ratios curves, since overlaying them produces concentric

curves.

8.2 Hemoglobin Color Scale

In the course of this investigation, we have done our best to squeeze dry the data sources

available to us. Given the plethora of parameterized models and 3D graphics we have generated

and examined, we'd now like to circle back to the hemoglobin color scale (HCS) described in Section

2. We have annotated the \criteria for failure" observations made by its inventors[7] below with

our own answers to the question: \Why does HCS work in the lab?"

1. (uniform `D') Inadequate or excessive blood - Where blood viscosity does not vary much and

when a known volume is applied to a card spot of known area and absorbency2, the sample

will have a uniform thickness and (re
ected) light will penetrate only so far.

2. (SpO2) Reading the results too soon or too late (beyond the limit of two minutes) - Waiting

a prescribed amount of time creates a sample with uniform SpO2.

3. (wavelength) Poor lighting - Looking at blood in white light, the human eye registers no

wavelengths above red and blood absorbs all wavelengths below red.

4. Holding the scale at the wrong angle

So, if nothing else, our research has given us a new appreciation of the insights one can gain from

smearing blood on cardboard.

9 Conclusions

We believe that the exercise of removing the c = 35H constraint was successful. It allowed us to

create a new model relating optical density, hemoglobin and hematocrit. In addition, based on the

above observations and analysis, we are hopeful that our model OD(Hgb;Hct; lambda;�D;%sat)

embodies at least a subset of the correct parameters.

2Absorbency - as in how a paper towel sucks up water
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