
1 How I Got Started:

A year ago I investigated a mathematical problem relating to Latin squares.

Most people, whether knowing it or not, have actually seen a Latin square

at some point in their lives and many newspapers actually include partial

Latin squares on a daily basis in the form of a sudoku puzzle. A Latin

square is a grid of cells with numbers in each cell such that no number is

repeated in any row or column, so any completed sudoku puzzle is really

a 9x9 Latin square. Although Latin squares have been around for a while,

providing entertainment in the form of puzzles to people ranging from Ben-

jamin Franklin to high school students like me, there are actually quite a few

open mathematical problems surrounding Latin squares. Latin squares have

been used not only as puzzles, but also as tools to aid in eliminating bias in

experimental design, and they are mathematically very interesting and have

connections to areas like group theory and graph theory. This is why Paddy

Bartlett, then a graduate student at Caltech, was interested in Latin squares

and furthermore wanted to share his mathematical interest in Latin squares

with a bunch of mathematically bent high school students taking part in the

Canada/USA MathCamp.

Paddy taught a course on Latin squares at MathCamp 2012 and addi-

tionally offered some research opportunities to interested students. Paddy

proposed a problem to me regarding the impossibility of a certain property
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in Latin squares of an odd size, and for the few remaining weeks of Math-

Camp I played around with concrete examples of Latin squares trying to get

an intuition for these objects. However, like most mathematical problems,

it takes a some time of just playing with the problem before one can get a

feeling of what might be true and why, and even longer to construct a general

proof. Therefore, as to be expected, I made little headway in the couple of

weeks I had the problem at MathCamp.

Luckily, unlike a lot of lab-based research, all I really needed to continue

my research was a piece of paper and a pencil. I also had the good fortune

of having two math professors in my house, allowing me to bounce ideas off

of my dad, and whenever I had a question, Paddy was only an email away.

Continuing my research, I quickly found a paper1 which proved what I was

trying to show was impossible was actually very possible (this was probably

why I made so little headway trying to prove a false claim). Clearly this

paper meant that I couldn’t continue my research in exactly the same way,

but it didn’t invalidate some of the smaller results I had already proven. For

example, I showed that if you consider the first three rows of a Latin square

this property I was considering actually was possible, yet the paper I found

showed that this property was possible when considering the full square. This

1Hirschfeld, J. W. P., Magliveras, Spyros S. and Resmini, M. J. De. Interca- lates
Everywhere. Geometry, Combinatorial Designs, and Related Structures: Proceedings of
the First Pythagorean Conference. 245th ed. Cambridge, U.K.: Cambridge UP, 1997.
69-88. Print.
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made me think that there must be a “breaking point” at some place where

this property stops being impossible and becomes possible, so my research

shifted from looking at Latin squares to looking at Latin rectangles, or the

first few rows of a Latin square.

This paper taught me one of the most valuable lessons about mathemat-

ics: persistence is key. As poet Piet Hein says, “Problems worthy of attack

prove their worth by fighting back.” Finding this paper that proved the exact

opposite of what I was endeavoring to prove was definitely a way that the

problem fought back, but instead of letting the problem win, I persisted and

used this paper, Intercalates Everywhere, to my advantage. As mentioned

above, this new knowledge led me to a slightly different and more successful

problem to investigate. Additionally, I was able to use some of the mathe-

matical ideas in this paper to help me prove some of my own results. Even

in the face of what seemed to be a roadblock, I persisted and adapted my

research to ultimately yield results.
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2 What I Proved:

One of the interesting and useful properties of Latin squares and Latin rect-

angles is the existence of “intercalates” or 2 by 2 sub squares. If we choose

two rows and two columns and the four cells in the intersection of these rows

and columns forms a two by two Latin square, then we have just found an

intercalate! I was investigating a property called “ubiquity,” meaning that

every cell in the Latin square or Latin rectangle is part of an intercalate.

Since intercalates are 2 by 2 sub squares, it can be expected that they would

be easier to find in a Latin rectangle with an even number of columns, but

the possibility of ubiquity was less clear with respect to Latin rectangles with

an odd number of columns. My main question was for what values of m and

n could an m by n ubiquitous Latin rectangle be constructed, or in other

words, for what sizes of Latin rectangle is ubiquity possible.

Figure 1: An intercalate in a Latin rectangle.
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I proved three main results:

• It is impossible to create 3 by 2n + 1 ubiquitous Latin rectangles for

all n.

• It is possible to create m by 2n ubiquitous Latin rectangles.

• It is possible to create 2m by n ubiquitous Latin rectangles for large

enough values of m and n.
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Figure 1: Two cycles of odd length (red) being “zipped” together by blue
arrows.

I prove this first result by utilizing one of the connections between Latin

rectangles and a special type of graph called a directed graph. Each vertex
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in the graph corresponds to one of the different symbols that fill the Latin

rectangle. I separate the vertices into cycles of edges and use what I call a

“zipper argument” to zip together and pair up all the vertices in a cycle of

odd length with vertices in a separate cycle of the same odd length as shown

in Figure 1. By pairing up every odd cycle using the properties of ubiquity,

I show that there must be an even number of vertices, therefore showing it

is impossible to have and odd number of vertices and so a 3 by odd (3 by

2n + 1) ubiquitous Latin rectangle is impossible to create.

This second result is split into two cases: skinny rectangles and fat rect-

angles. For the skinny rectangles, I use a technique called “quilting.” I take

a “patch” which is just a 2 by 2 Latin square, and I repeat this patch over

and over again but with different numbers to create a quilt made up of 2 by

2 Latin squares. Clearly since the entire Latin rectangle is made up of inter-

calates, each cell will be in an intercalate, therefore satisfying the property

of ubiquity.

1 2 3 4 5 6

2 1 4 3 6 5

3 4 5 6 1 2

4 3 6 5 2 1

Figure 3: An example of quilting.

Now for the fat rectangles, I start out with a Latin square with each cell

in lots of intercalates. Then I show that if I start taking away rows, I’ll be
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breaking up at most one intercalate for any given cell, meaning I can take

away up to a certain number of rows and still have each cell in at least one

intercalate. In order to construct this Latin square with each cell in lots of

intercalates, I use some group theory similar to what the paper Intercalates

Everywhere used. I establish a relationship between algebraic properties in a

group and the appearance of intercalates in the group’s multiplication table

(Cayley table).

I continue using some group theory to prove my last result. I start out

with the constructed Latin square with lots of intercalates and use a tech-

nique called “transversal expanding” and I switch around the entries in an

intercalate to produce a 2m by 2m+ 1 ubiquitous Latin rectangle (an exam-

ple is shown in Figure 4). Furthermore, I use the technique of quilting again

but this time using patches of 2m by 2m−1 and 2m by 2m Latin rectangles.

Finally, according to the creatively named Chicken McNugget Theorem, I

can create a 2m by n ubiquitous Latin rectangle by quilting for large enough

values of n.
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R 2 3 4 5 6 7 8 9 10 11 12 1

6 1 R 3 4 5 12 7 8 9 10 11 2

5 6 1 2 R 4 11 12 7 8 9 10 3

4 5 6 1 2 12 R 11 3 7 8 9 10

3 4 5 6 1 2 9 10 R 12 7 8 11

2 3 4 5 6 1 8 9 10 11 R 7 12

7 12 11 10 9 8 1 R 5 4 3 2 6

8 7 12 11 10 9 2 1 6 R 4 3 5

9 8 7 12 11 10 3 2 1 6 5 R 4

10 R 8 7 12 11 4 3 2 1 6 5 9

11 10 9 R 7 3 5 4 12 2 1 6 8

1 9 2 8 3 7 10 6 11 5 12 4 R

Figure 4: A 12 by 13 ubiquitous Latin rectangle. Transversal expanding

results in the new symbol R and the cells shown in blue show a switched

intercalate.

The main goal of my research was to determine for what values of m and

n I could construct an m by n ubiquitous Latin rectangle. Although I still

haven’t fully categorized these Latin rectangles, my results have partially

resolved this question and I now have a better insight on the structure of

Latin rectangles and intercalates!
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