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Personal Statement

Number theory is a field that has, for me, always held a special kind of magic. There is

something about reading an elegant proof that sticks with me, gives me a certain feeling

of gratification like the sensation experienced at the conclusion of a mystery novel. I have

always believed that the objective of any mystery is to figure it all out before the grand

reveal, to make the leaps of intuition before Sherlock Holmes. It is exactly that desire to

investigate that compels me to study numbers. In number theory, when proving a theorem,

you start with a problem, uncover clues, try out possibilities and Eureka! you’ve constructed

a solution; case closed!

Now this eureka moment is not unique to number theory; certainly every field of study

contains fulfilling epiphanies. However, number theory specifically appeals to me because

you can take a very easily stated problem and find that what at first glance appeared

to be a trivial inquiry, was in fact something inconceivably complex. Questions lead to

more questions; it is a delicate balance of simplicity and impossibility, of order and chaos,

constantly in flux. Even the most fundamental problems of number theory are not all

that well understood because of this paradox. One such problem is trying to understand

the distribution of prime numbers. Primes are very fundamental to the study of numbers

because all natural numbers can be represented as a unique product of primes. Brilliant

mathematicians, many of them personal heroes of mine such as Euler and Riemann, tried

for years to make sense of these curious atoms of mathematics and in their years of study

made monumental contributions. But the full truth has always remained elusive because
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primes are, in a word: chaotic. They remain a mathematical enigma to this day.

Hoping to make progress on some of these difficult problems, I reached out to Dr. Lawrence

C. Washington, a University of Maryland professor with a passion for number theory and

years of experience. He agreed to mentor me on whatever I wanted to study. The problem

I chose to study was the n2 + 1 prime problem that simply asks whether or not there are an

infinite number of primes of the form n2 + 1 (where n is a natural number). It was a very

difficult problem that I didn’t end up making much headway on, but I had to learn many new

techniques such as sieve theory to even give the problem a serious attempt. During this time

I learned one technique which interested me greatly: the technique of Riemann-Stieltjes

integration. Dr. Washington showed me that it could be used with the prime counting

function to rewrite certain sums. I was intrigued. So one day on the bus I started to play

around with Stieltjes Integration. This playing around yielded some fascinating results which

eventually became the subject of my paper.

Doing this project taught me that you don’t have to be an Euler or a Riemann in order to

make contributions to the field you love. In my experience, all you really need is passion

and a bit of luck - possibly a superb mentor, as well. If I had to give some advice to young

people looking to do research in any field that utilizes mathematics, it would be ”love what

you’re doing.” I believe that if you are passionate about something, you end up spending

your time just doing that thing and immersing yourself in it. Sometimes you get lucky, and

you get interesting results. Sometimes you don’t, but you always learn something, and to

me, that is a reward in itself.
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Introduction

Prime Power Sums are sums of the form:

∑
p≤x

pn

where n ∈ < and p is a prime number.

An example of this might be the sum of the primes less than 10. The prime power sum

notation for this particular example would be:

∑
p≤10

p = 2 + 3 + 5 + 7 = 17

A more complex example might be the sum of the squares of the primes less than 10. The

notation for that would be:

∑
p≤10

p2 = 22 + 32 + 52 + 72 = 87

Such sums have been rigorously explored in the cases of n = −1, 0, 1. The case n = −1 is the

harmonic prime series studied by Euler which he showed diverges as ln(ln(x)). The n = 0

case is the famous prime number theorem which aims to count the number of primes less

than x (This can be easily seen because p0 = 1 so it adds 1 for every prime). The n = 1 was

explored by Bach and Shallit in 1996 in which they showed that the sum of primes less than

x was asymptotic to (x2/2)ln(x).The interesting part about such sums is that they share a

particular relationship with the prime counting function, a function which we will define to

be π(x) =the number of primes less than or equal to x. In our research, we generalize such

sums by proving the following asymptotic formula:
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Theorem: Let n ≥ 0. Then

∑
p≤x

pn = π(xn+1) +O
(
π(xn+1)

ln(x)

)

This is important because as we will later see, it gives us a new method of estimating the

prime counting function that allows you to use the primes up to one bound to estimate the

number of primes up to a larger bound. This formula was devised while investigating the

Riemann-Stieltjes integral which will be expounded upon at length in the next section.

Techniques

The technique that is most crucial in the proof of our main theorem is that of Riemann-

Stieltjes Integration. Suppose we have some collection of points on the interval a = x0 <

x1 < x2 < ... < xn = b and the sum:

n∑
i=0

f(x∗i )(g(xi+1)− g(xi)))

Where x∗i is some point on the interval [xi+1, xi].

Then if the sum converges to a number N as max(xi+1 − xi) → 0, it can be approximated

by the Riemann-Stieltjes Integral which is of the form:

b∫
a

f(x)d(g(x))

We are guaranteed the existence of the integral if f(x) is continuous and g(x) is of bounded

variation. The utility of this statement in prime power sum estimation cannot be overstated.
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This is because we can say the following:

π(x)− π(x− 1) =

 1 x is prime

0 x is composite

So if we are applying some function on primes less than x, then we can say:

∑
p≤x

f(p) =
x∑

n=2

f(n)(π(n)− π(n− 1))

And by the Riemann-Stieltjes Integral we can say that:

∑
p≤x

f(p) =
x∑

n=2

f(n)(π(n)− π(n− 1)) =

x∫
2

f(x)d(π(x))

If f(x) is continuous and differentiable (which implies df(x) = f ′(x)dx) and the integrator,

in this case π(x), is of bounded variation (which it is), then we can integrate by parts. We

can use this technique to evaluate the Riemann-Stieltjes Integral in our main theorem.

Proof of Main Theorem

Proof: To begin this proof we must consider the asymptotic expression for the function π(x).

As a consequence of the prime number theorem, we can express π(x) as the following:

π(x) =
x

ln(x)
+ E(x), E(x) = O

(
x

ln2(x)

)

The Stieltjes Integral then allows us to write our Prime Power Sum as:

∑
p≤x

pn =

x∫
1.5

tnd(π(t))
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Using the technique of integration by parts, we can rewrite our integral as:

= tnπ(t)|x1.5 − n
x∫

1.5

tn−1π(t)dt

The evaluation of tnπ(t)|x1.5 simply is xnπ(x) so we will substitute in the evaluation.

= xnπ(x)− n
x∫

1.5

tn−1π(t)dt

Now examining the second half of the expression for the sum, we realize that the integral

contains a π(x) term which we can naturally rewrite in its asymptotic form which was alluded

to at the beginning of the proof. The result is below.

x∫
1.5

tn−1π(t)dt =

x∫
1.5

tn

ln(t)
dt+

x∫
1.5

tn−1E(t)dt

Now taking the first half of that expression, we can integrate by parts again to obtain the

following result.
x∫

1.5

tn

ln(t)
dt =

xn+1

(n+ 1) ln(x)
+

1

n+ 1

x∫
1.5

tn

ln2(t)
dt

We will deal with this result after reducing the other part of the expression a bit. What we

have is an error term which we know is bounded by some constant times x
ln2(x)

. Since we

really only want an asymptotic expression, we can attempt to bound the magnitude of this

integral through a series of inequalities. The result of such bounding is the following:

∣∣∣∣∣∣ 1

n+ 1

x∫
1.5

tn−1E(t)dt

∣∣∣∣∣∣ ≤ 1

n+ 1

x∫
1.5

tn−1|E(t)|dt ≤ C

x∫
1.5

tn

ln2(t)
dt, C ∈ R
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Now what we have is an integral from which we can create an error term. Since the integrand

is increasing for all t greater than e2/n due to the fact that

d

dx

(
xn

ln2(x)

)
=
xn−1(n ln(x)− 2)

ln3(x)

is positive for all x greater than e2/n, we can bound the increasing part of the integral by using

the trivial estimation: assuming the maximum value on the interval and then multiplying by

the length of the interval. The other part of the integral from 1.5 to e2/n either doesn’t exist

(in the case e2/n < 1.5, the integral as it stands would be increasing for the entire interval)

or is otherwise a constant for each particular n. The result is as follows:

C

x∫
1.5

tn

ln2(t)
dt ≤ D1 + C

x∫
e2/n

xn

ln2(x)
≤ D2 + C

xn+1

ln2(x)

Now C xn+1

ln2(x)
is O

(
π(xn+1)
ln(x)

)
because π(xn+1) ∼ xn+1/((n+1) ln(x)) and so we can rewrite our

original equation as:

∑
p≤x

pn =
xn+1

ln(x)
− nxn+1

(n+ 1) ln(x)
+O

(
π(xn+1)

ln(x)

)

which simplifies to: ∑
p≤x

pn =
xn+1

(n+ 1) ln(x)
+O

(
π(xn+1)

ln(x)

)
And since π(xn+1) = xn+1/((n+ 1)ln(x)) +O(π(xn+1)/((n+ 1)ln(x))) we obtain our desired

result: ∑
p≤x

pn = π(xn+1) +O
(
π(xn+1)

ln(x)

)
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Reversing the Formula

Suppose instead of an estimation of
∑
p≤x

pk, we would like an estimation of the prime counting

function. We can get this simply by saying:

π(x) ≈
∑

p≤x1/(k+1)

pk

(This is simply the main theorem with where n has been replaced with k and x1/(k+1) has

been plugged in for x.)

So what does this even mean? Well, let us say, I wish to know the number of prime numbers

less than 106. I don’t really want to check every number up to 106 because that seems

tedious. It is far easier to know every prime less than 103 or 102 so instead I make either

of those lists. Say I make the 103 list. Now the theorem says that π(106) is very nearly∑
p≤106/(k+1)

pk. Since I know the primes ≤ 103, I might as well use k=1. So the sum of primes

less than 1000 is approximately the number of primes under 1000000. Neat. The natural

question is to ask is ”How approximate?” Lets find out!

∑
p≤103

p = 76127

π(106) = 78498

Well, off by ≈ 2000. But give the formula some credit, that result is pretty close (For math-

ematically rigorous definitions of ”pretty close”).

This is particularly interesting to examine computationally because using computational

methods, we can examine error in order to get a good idea of how close we are to π(x) for

different values of k and x by using the relative error. Relative error is good because it shows

how far off we are, scaled to take into account the magnitude of the numbers.
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Figure 1: k=2 graph

This graph depicts the relative error for the k=2 case of our estimation function for value

of x from 1000 to 100000. The relative error is

E(x) = 1−

∑
p≤x1/3

p2

π(x)

The graph in question reveals several important things about our function. The first of

these is that it converges, something we already know from the asymptotic formula. The

second thing that is noteworthy is the variation. Because we are taking the primes up to

the cube root of x, we see a noticeable jump every time the cube root of x is prime. The

error for x at this magnitude is too large to claim it is an accurate test. However, one thing

to notice is that the error is sometimes negative. This is very different from the other graphs.
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Figure 2: k=1 graph

This graph depicts the relative error for the k=1 case of our estimation function for value

of x from 1000 to 100000. The relative error is

E(x) = 1−

∑
p≤x1/2

p

π(x)

The graph again provides us with more insight. Once again we see that the graph is con-

verging and this time in a much more pronounced way. The graph is erratic because the

primes are occurring much more often. What’s interesting to note is the fact that we see

it go negative in similar places. This could be a coincidence, but it’s doubtful. It is likely

that at these points prime distribution is somewhat irregular for either the prime counting

function or the prime power sum. This is, however, merely a conjecture.
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Figure 3: k=.5 graph

This graph depicts the relative error for the k=1/2 case of our estimation function for

value of x from 1000 to 100000. The relative error is

E(x) = 1−

∑
p≤x2/3

p1/2

π(x)

Here we can see that the error is becoming quite small - only 2% at x=105. The convergence

is now extremely clear and interestingly enough, we have our first graph with no negative

relative errors, which means that there may not be any. It would be nice to have a proof

either confirming or denying this hypothesis.
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Figure 4: k=.2 graph

This graph depicts the relative error for the k=1/5 case of our estimation function for

value of x from 1000 to 100000. The relative error is

E(x) = 1−

∑
p≤x5/6

p1/5

π(x)

The final graph that I have decided to include is the best at estimating the error. The reason

is simple. The fifth root of the largest prime is less than 10 and we’re only counting up to

105/6 and as we let our k approach 0 the error must also approach 0. To better understand

this, at k=0 the Prime Power sum literally adds 1 for every prime up to x which is exactly

prime counting function. Also no 0 crossings here either, so there’s still a lot to be uncovered

surrounding that issue.
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Figure 5: Overlay Graph

This is simply the same graphs overlapped to give insight and perspective as to how k

affects how these graphs behave. What is important to note is the reduction of variation

in the error as k becomes small, because as mentioned before, as k goes to 0, E(x) goes to

0. This makes sense, at least from the standpoint of intuition, because as k decreases, our

formula sums more primes. And common sense says the more we know about the primes

before, the better we can predict the primes afterwards. That was, of course, the fascinating

result of our research and it is illustrated clearly in our graphs.
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Further Research

There are several possibilities for further research that this research presents. One is deter-

mining the question of whether or not the relative error function crosses 0 infinitely often and

if so for what values of k? One observation which we made was that there tends to be a bias.

The error is almost always positive and rarely falls below 0. Another possibility is to find a

more accurate error bound. There is some possibility that the solution to this question lies

in an understanding of explicit formulae for the Riemann Zeta Function. Another possible

path for research could be to investigate whether or not this holds true for the modular case.

For instance, does the sum of primes which are 3 mod 4 and less than x predict the number

of primes 3 mod 4 and less than x2? These are all questions which could certainly produce

some intriguing results.
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