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1. Abstract

In this paper, we develop a method for a problem not heavily touched upon
by existing mathematical literature: evaluating the constructibility of n-division
points by area of any given closed polar curve, with n-divisions defined as inter-
sections of a closed curve with rays starting at the origin that divide the curve
into n sectors of equal area. Positive results were found for the ellipse, the in-
ner loop of the Maclaurin trisectrix, and the k-petaled lemniscate. Our method
involved finding a closed form solution that expressed the radius of the curve in
terms of the traversed area in order to analyze whether certain divisions were
constructibly possible. When this expression was algebraic and constructible,
using this method yielded the following results: the n-divisions of an ellipse are
constructible if n is constructive for a circle, and the n-division points of the inner
loop of the Maclaurin trisectrix and of the k-petaled lemniscate are constructible
for all positive integers n. Though the results for the ellipse have already been
proven by Kepler, the results for the Maclaurin trisectrix and the k-petaled lem-
niscate are original. Furthermore, our method suggests that other curves with
transcendental expressions for radius in terms of area do not have constructible
n-division points. A secondary result of our work is that the constructible n-
division points are also constructible without the given curve for the ellipse and
the inner loop of the Maclaurin trisectrix, though not for most k-lemniscates.

2. Introduction

Constructing and n-dividing different polar curves through the use of straight-
edge and compass constructions are proven using Field Theory. Some of the
solved systems include arc length divisions for circles, hypocycloids, and lemnis-
cates. However, little has been done in terms of n-dividing area of pre-drawn
polar curves. Using field theory allows for a closed determination of the pos-
sible n-divisions, since it gives a closed form for possible lengths and angles.
Constructibility can be applied to the long-standing ancient Greek ”unsolvable”
problems, roots of unity in complex analysis, and computer science through
binary digits. Furthermore, the Maclaurin trisectrix has applications in the geo-
metric problems of antiquity, specifically angle trisection, hence the title of the
curve.
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3. Definitions

Definition 1 (Polar Curve). Let r be the distance from the origin and θ be
the angle in the counter-clockwise direction from the positive x-axis. If r can be
written as a function of θ, then the graph of r is called a polar curve.

Definition 2 (n-Divisions of a Polar Curve by Length). A set of n points on
the curve enumerated in the counterclockwise direction {1, 2, 3, ..., n} is said to
n-Divide a Polar Curve by length if the points divide the curve into n arcs of
equal length.
Note: n-divisions by length are well-defined only for closed curves.

Definition 3 (n-Divisions of a Polar Curve by Area). A set of n points on
the curve enumerated in the counterclockwise direction {1, 2, 3, ..., n} is said to
n-Divide a Polar Curve by Area if the points divide the curve into n sectors of
equal area.
Note: n-divisions by area are well-defined only for closed curves.

Definition 4 (k-Petaled Lemniscate). A k-petaled lemniscate is a curve of the
form r2(θ) = cos(kθ), where k is an integer.

Definition 5 (Group). A group is a set of elements, G, that is closed under an
associative binary operation, ∗, that also satisfies the following two properties:

(i) There exists an identity element e ∈ G such that e ∗ g = g for all g ∈ G.
(ii) Every element g ∈ G has an inverse g−1 such that g−1 ∗ g = g ∗ g−1 = e.

Definition 6 (Field). A field is a set of elements, F , which is closed under two
commutative binary operations, ∗ and +, such that F \ {0} is a group under
multiplication, ∗, and F is a group under addition, +.

Definition 7 (Field Extension). If L is a field and K is a subfield of L, denoted
K ≤ L, then L is called a Field Extension of K.
Furthermore, L = K[α1, α2, . . . , αn] can be expressed as a vector space over K
with basis vectors {α1, α2, . . . , αn}.
The dimension of L as a vector space over K, n is denoted [L : K] and is called
the degree of the extension.

Definition 8 (Fermat Prime). A Fermat Prime is a prime number, p = 22
t

+ 1
with t ∈ N.
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4. Constructibility

Constructibility originally began as a Classical Greek geometry problem and
focuses on what can be created solely with a straightedge and compass. While the
Greeks could only pose difficult problems and solve them, the use of Field Theory
and Galois Theory can both prove difficult constructions as well as disprove the
existence of others.

4.1. Addition and Subtraction. If m and n are constructible, then adding or
subtracting parallel lines of length m and n will yield a line segment with the
desired length.

4.2. Multiplication and Division. To construct the length mn, one can first
construct the points (0,m) and (n, 0). Then one should construct a line l1 from
(0, 1) to (n, 0). Lastly, since the intersection of l2 and the x-axis will be (mn, 0),
constructing a line l2 parallel to l1 that passes through (0,m) completes the
problem.

4.3. Square Root. The figure below illustrates the procedure used to construct
a line segment of length

√
m given a line segment of length m+ 1.

Drawing a circle whose diameter is the line segment (−1, 0), (m, 0), would inter-
sect the y-axis at (0,

√
m) as shown.

This can be easily proven using similar triangles.

Figure 1. Constructing
√
m

4.4. The Results in Terms of Field Theory. Since our two available tools
are a straightedge and a compass, points can be constructed from three differ-
ent types of intersections: straightedge/straightedge, straightedge/compass, and
compass/compass. The first is the intersection of two lines, meaning that the
construction will always stay in the field, since the intersection of two lines yields
a linear equation. The intersection of a circle and a line is an intersection of a
quadratic and a linear system, which can then be reduced into a quadratic equa-
tion. This reduction to a quadratic equation applies similarly to the intersection
of two circles, which represents the intersection of two quadratic systems. Thus,
for any intersection point (x, y), regardless of the type, x and y can be reduced
down to a quadratic equation in terms of the elements of the current field. This
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means that, for any element α constructed from a field K ⊂ R it must be true
that pα2 + qα+ r = 0, for some p, q and r ∈ K. This would imply that

α2 =
−qα− r

p

meaning that any element in K(α) can be written in the form c + dα where
c, d ∈ K.

Thus any intersection either preserves the field, or imposes a degree-2 ex-

tension on the field. Furthermore, because α =
−q ±

√
q2 − 4pr

2p
, any element

generated from a degree-2 extension is generated from a combination of the five
constructible operations discussed in the previous section.

Therefore, any value that can be created from a finite chain of degree-2 ex-
tensions over the Q is a constructible number. Furthermore, the converse is true
that any value that is outside the reach of any chain of degree-2 extensions is
not constructible. In other words, a number is constructible if and only if it
can be created through a series of the constructible operations which embody all
degree-2 extensions: addition, subtraction, multiplication, division, and square
root.

5. Previous Theorems on Arc Length

Theorem 1 (Gauss-Wantzel). A regular n-gon is constructible if and only if it
has n sides where n = 2qp1p2p3 · · · pj such that q ∈ N and each of the pi’s is a

distinct Fermat prime. Thus, all constructible angles must be of the form
2πk

n
,

where n is of the above form, and k ∈ Z.

Theorem 2 (Abel). A lemniscate, a curve of the form (x2 + y2)2 = c(x2 − y2)
or r2 = cos(2θ), is n-divisible by length for the same values as a circle which
is when n = 2qp1p2p3 · · · pj such that q ∈ N and each of the pi’s is a distinct
Fermat prime.

Theorem 3 (Mani-Salzedo). A hypocycloid is a curve traced out by the trajectory
of a fixed point, P , on a circle of radius 1 that rolls around the circumference of
a circle of radius c > 1. For all pre-drawn hypocycloids, the n-divisions for arc
length are constructible for all natural numbers n.

Thus, the question of the constructibility of n-divisions by length have been
solved and proven for the circle, the 2-lemniscate, and all hypocycloids. However,
as discussed in the Introduction, little has been done in the pursuit of n-divisions
by area, which is the topic we will explore in the upcoming sections. Physicist
Johaness Kepler did analyze n-divisions by area of the ellipse, though there is
little literature on area divisions for other polar curves. Furthermore, note that,
for a circle, the n-division points by area are equal to the n-division points by
length.
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6. Our Method

It is known that we can find a function of the area A in terms of the angle
traversed via the polar area formula:

A =

∫ β

α

1

2
r2dθ

For certain curves, this allows us to define a function of ϕ, the angle relative
to the positive x-axis, in terms of A, the area traversed by angle ϕ. Using the
polar curve equation r(ϕ), we can then define a function r = ρ(A). Finally, if
the radius at each nth division of the total area A0 is of constructible length, i.e.
if ρ(mn A0) is constructible for all 1 ≤ m < n, then the mth division point can be
attained by drawing a circle of radius ρ(mn A0) centered at the origin, implying
all n-divisions are constructible for that value of n. Furthermore, note that this
method requires the curve to be drawn in the first place in order for its division
points to be constructed. However, by evaluating both r and θ, we can evaluate
whether division points using the method are constructible without the given
curve.

7. The Ellipse

Without loss of generality, since the ratio of the major axis to the minor axis
is what distinguishes ellipses from one another, we can restrict our selection of
ellipses to those with a vertical minor axis of length 2 and a horizontal major axis
of 2a, for some a ∈ R. We can, then, write the general rectangular coordinate
equation as

x2

a2
+ y2 = 1

Kepler, using the following analysis unique to ellipses, proved that the n-
divisions of circles directly correspond to n-divisions of ellipses. Using the rect-
angular coordinate equation, we get that y = ± 1

a

√
a2 − x2, which for all x-

coordinates is exactly 1
a times the height of the circle of radius a centered at

the origin. Thus, the area traversed by the circle over any x-interval will also
maintain this ratio and be a times the area traversed by the ellipse over the same
interval. After some algebra, one can quickly prove that the n-division points
by area of a circle will have equal x-coordinates as the n-division points of an
ellipse. Thus, as the y-coordinates differ only by the ratio of a, the n-division
points for an ellipse are constructible if and only if they are constructible for a
circle. Our method, though less straightforward and elegant, provides an alter-
native proof for the same conclusion reached by Kepler. Though the method
may be less effective on the already solved problem of the ellipse, its use in this
case allows us to verify the results of the method and apply it effectively for
other curves. We start our method by substituting x = r cos(θ) and y = r sin(θ)
into the rectangular equation, which yields r2(cos2(θ) + a2 sin2(θ)) = a2. This
gives the following polar equation:

r(ϕ) =
a√

a2 + (1− a2) cos2(ϕ)
.
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Thus, the area

A(ϕ) =
1

2

∫ ϕ

0

r2dθ

=
1

2

∫ ϕ

0

a2

a2 + (1− a2) cos2(ϕ)
dθ

=
a

2
arctan(a tan(x)).

However, since A is a periodic function with period π, this expression for A(ϕ)
is accurate only for −π2 < ϕ < π

2 . This gives the total ellipse area

A0 = 4 lim
x→π

2

A(x)

= 2a lim
x→π

2

arctan(a tan(x))

= πa.

Solving for ϕ in terms of A yields

ϕ = arctan(
1

a
tan(

2A

a
)).

Substituting this expression for ϕ into r(ϕ) gives us

ρ(A) =
a√

a2 + (1− a2) cos2(arctan( 1
a tan( 2A

a )))
.

Since cos(arctan(u)) = ± 1
1+u2 , then

ρ(A) =
a√

a2 + 1−a2
1+( 1

a tan( 2A
a ))2

=
1√

1 + 1−a2
a2+tan2( 2A

a )

=

√
a2 + tan2( 2A

a )

1 + tan2( 2A
a )

Since 1 + tan2( 2A
a ) = sec2( 2A

a ), we can continue this simplification.

ρ(A) =

√
cos2(

2A

a
)[a2 + tan2(

2A

a
)]

=

√
a2 cos2(

2A

a
) + sin2(

2A

a
).

Thus the radius for the mth n-division of A0 is equal to

ρ(A0
m

n
) = ρ(

πam

n
) =

√
a2 cos2(

2πm

n
) + sin2(

2πm

n
).

This corresponds to the point (a cos( 2πm
n ), sin( 2πm

n )) which aligns exactly with

Kepler’s result. Thus, the point is constructible if and only if cos( 2πm
n ) is con-

structible, which is true only for constructive n values: n = 2qp1p2p3 · · · pj where
q ∈ N, pi’s are distinct Fermat primes. Furthermore, the n-division point, when
constructible, is constructible without the given curve, since each of the x and y
coordinates are constructible individually.



7

8. The MacLaurin Trisectrix

The polar equation for the Maclaurin trisectrix is r = sec(φ3 ), for − 3π
2 ≤ ϕ ≤

3π
2 . However, the inner loop is bounded by angles −π and π. Thus, for −π ≤ π,

the angle traversed by the inner loop from −π to ϕ is given by

A(ϕ) =
1

2

∫ ϕ

−π
r2dθ

=
1

2

∫ ϕ

−π
sec2(

θ

3
)dθ

=
3

2
[tan(

ϕ

3
) +
√

3]

As a result, this gives us a total inner loop area of A(π) = 3
√

3. Additionally,

we have ϕ = 3 arctan( 2A
3 −

√
3) when solving for φ in terms of A. Substituting

this expression into r(ϕ) yields

ρ(A) = sec(arctan(
2A

3
−
√

3))

=

√
1 + (

2A

3
−
√

3)2

=
2

3

√
A2 − 3

√
3A+ 9.

Thus, since
m

n
∈ Q is always constructible, the radius of the mth n-division of

the inner loop area

ρ(3
√

3
m

n
) = 2

√
3m

n
(1− m

n
) + 1

is n-divisible by area, for all n ∈ N.
Furthermore, note that solving ϕ in terms of r yields ϕ = 3arcsec(r). Addi-

tionally, if r is a constructible value, then the angle arcsec(r) is also constructible,

Figure 2. An ellipse with a = 3 divided into 5 sectors of equal area
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for a right triangle with a hypotenuse of length r and a leg of length 1 can then
easily be constructed. Thus, each division point of the inner loop of the Maclau-
rin trisectrix can be constructed without a given loop.

Figure 3. The inner loop of the Maclaurin trisectrix dissected
into 7 sectors of equal area.

9. The k-Petaled Lemniscate

Figure 4. The 2,3, and 4-Petaled Lemniscates, from left to right

The k-petaled lemniscate has a polar equation of r2 = cos(kϕ), where k ∈ Z.

Thus, since each petal spans an angle of
π

k
, the area A of the first petal is

A(ϕ) =
1

2

∫ ϕ

− π
2k

r2dθ

=
1

2

∫ ϕ

− π
2k

cos(kθ)dθ

=
1

2
[sin(kϕ) + 1]

where − π

2k
< ϕ ≤ π

2k
. This gives a total area of A( π2k ) =

1

k
for each petal of

k-petaled lemniscate. Now that we have A =
1

2k
[sin(kϕ)+1], solving for ϕ yields
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ϕ =
1

k
arcsin(2kA − 1). Substituting this expression for ϕ into r =

√
cos(kϕ)

yields

ρ(A) =
√

cos(arcsin(2kA))

=
√

1− (2kA− 1)2

= 2
√
kA(1− kA)

where 0 ≤ A < 1
k . For the total area of the k-lemniscate, there are two cases to

be considered. If k is an odd value, then lemniscate has 2k petals, so the total
area A0 = 2. If k is an even value, then the lemniscate has k petals, so the total
area A0 = 1.

In general, the mth n-division of the total area is
mA0

n
. However, ρ is only

well-defined for 0 ≤ A < 1
k , i.e., for a single petal. Thus, one can pursue the

following procedure to find the n-division points of a k-lemniscate. One can
pursue the following procedure to find the n-division points of a k-lemniscate.
One can find the mth and (n−m)th division points of each petal by drawing a
circle of radius ρ( mkn ), for m ≤ n

2 , since

ρ(
m

kn
) = ρ(

1

k
− m

kn
) = ρ(

n−m
kn

).

This radius is constructible because m
n ∈ Q and ρ( mkn ) = 2

√
m
n (1− m

n ). Thus,
this procedure constructibly divides each petal into n sectors. Furthermore, note
how the values of ρ are independent of the value of k. For an odd k, the entire k-
lemniscate is then divided into 2kn sectors, so selecting every 2kth point gives n
equal sectors. Similarly, for an even k, the entire k-lemniscate is divided into kn
sectors, so selecting every kth point gives n equal sectors. Thus, the n-division
points of a k-lemniscate are constructible for all n, k ∈ N.

Now, note that solving for ϕ in terms of r yields

ϕ =
1

k
(arccos(r2) + πp)

where p ∈ Z. Thus the angle of a division point of radius

ρ(
m

kn
) =

1

k
(arccos(

4m

n
(1− m

n
) + πp)).

The kth Chebyshev polynomial of the first kind is

cos(kx) = Tk(cos(x))

=
eikx + e−ikx

2

=
(cos(x) + i sin(x))k + (cos(x)− i sin(x))k

2

=

k∑
i=0

(
k

i

)
cosi(x) sink−i(x) cos(

1

2
(k − i)π)

=

| k2 |∑
i=0

(−1)i
(
k

2i

)
cosk−2i(x)(1− cos2(x))i
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which is a kth degree polynomial with integer coefficients. If Tk =
∑k
i=0 aix

i,
then where θ is the angle of some division point,

Tk(cos(θ)) = cos(kθ)

=
4m

n
(1− m

n
)

=

k∑
i=0

ai cosi(θ)

then cos(θ) is a root of the kth-degree polynomial Tk(x) − 4

m
(1 − m

n ), which

has all rational coefficients. In other words, cos(θ) is an element of a kth degree
extension of Q. Thus, when k = 2i for some integer i, all n-division points of
the k-lemniscate are constructible without the given curve. On the other hand,
when k is not a power of 2, the n-division points of the k-lemniscate are not all
constructible without the given curve.

Figure 5. A 3-lemniscate divided into 5 equal sectors



11

10. Results

Kepler used simple geometry to prove that the conditions for constructibility
of a circular division apply also to an ellipse. Our method returned the same
results and provided an alternative proof to Kepler’s conclusion. Furthermore,
our method can be used more generally to evaluate n-divisibility for other curves.
We proved that the Maclaurin trisectrix, which had not been n-divided in the
past, can be divided into n equal sectors by area for any integer n. The curve
was previously used in constructibility by Maclaurin to prove the impossibility of
arbitrary angle trisection. Two hundred years ago, Niels Abel proved that the n-
division points of a lemniscate were constructible for n of the form 2qp1p2∗· · · pn,
where each pi is a distinct Fermat Primes and q is a natural number. He never,
however, considered the family of curves of the form r2 = cos (kϕ). Since this
family of curves has not been studied before, we decided to name this family the
k-petaled lemniscates. Furthering Abels research, in this paper, we have proven
that the n-division by area of any pre-drawn k-petaled lemniscate is constructible
for all integers n. Lastly, for each curve, we determined whether the n-division
points would be constructible without the pre-drawn curve. For the ellipse and
the Maclaurin trisectrix, all n-division points are constructible without the pre-
drawn curve. For the k-petaled lemniscate, all n-division points are constructible
without the given curve only when k is a power of 2.
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