
1

An Enhanced Method for HDR Imaging: Artifact-Free and Optimized for Mobile Devices

Jihyeon (Janel) Lee

I. Personal Section

With the advent of the smartphone, cameras have suddenly become very convenient. Like

many others, I enjoy taking pictures on my rather old, outdated phone. I became interested in

how to take better-quality photos despite my device’s limitations, and a Google search pointed

me toward high dynamic range (HDR) imaging. The process involves taking multiple photos

instead of just one to produce a final image that shows a real-world scene more completely. I

started researching the limits of what HDR imaging currently has to offer, and many of the

methods had yet to overcome obstacles, most of which often originated common problems (e.g.

camera shake). I thought it was intuitive for there to be a way to automatically correct a picture

when taken, especially when the problems precluded HDR imaging from working properly, and

that’s where my investigation for a solution began. My research goal was to create a

comprehensive approach that could account for the various issues in taking HDR photos but also

to optimize the algorithm to be implemented on mobile devices.

My project was almost entirely independent, and I conducted my research at home,

turning the unstructured space of my room and PC into a lab, appreciating the versatility of

computer science. Throughout the process, I did learn some additional concepts in math and

science, especially related to computational photography, but more importantly, I learned new

ways to apply concepts. For example, one of the problems I tackled was getting rid of blurring,

caused by movement of the camera. In order to quantify the motion, I used cross-correlation to

compare input images to each other and then calculated a moving vector to correct images that

had moved with respect to a reference image. I had learned about both cross-correlation and

vectors in school but in a much more rigid setting, restricted to homework problems or graphs in

textbooks; while learning those concepts at the time, I never would have imagined I would be

2

using them in photography. Certainly, science and mathematics became more alive and real to

me through research than through any other experience. Seeing and understanding them in action

was beyond any example in a lecture, and actually utilizing and integrating concepts to create

something new allowed me to synthesize information in a way I never had before in a classroom.

To other high school students who would like to undertake a project combining science

and mathematics, my advice is to be prepared to face continuous challenges and to learn. I

believe my research experience was a series of small discoveries that allowed me to eventually

be able to present a comprehensive solution, and that process, although arduous, was very

rewarding. There will be many times that you do not obtain the results that you expect or the

output you desire, but the exhilaration of discovery will be worth the hard work.

II. Research Section

1. Introduction

 The scenes of the real world that humans can observe have a high dynamic range (HDR),

or a high ratio of the maximum to minimum amount of light intensity, which cannot be captured

completely by a camera’s sensors. Most digital cameras have a limited dynamic range and spatial

resolution than that of natural scenes or even that of the human eye. The low dynamic range (LDR)

images captured by cameras lose detail for extreme values of light intensity (very dark or bright

areas) in a given scene, which exceed the capacity of the sensors. To overcome these limitations

and capture all of the visual information present in a high dynamic scene, several hardware and

software techniques have been developed [1, 2]. The most common approach consists of fusing a

set or “stack” of LDR images, each taken with different exposure times and each focusing on a

different region of the dynamic range. In this process, images are taken based on bracketed

exposure times: short exposure provides data for bright areas, while long exposure for darker areas.

3

One of the major obstacles for the practical application of HDR imaging is that a given scene

must be completely static in order to avoid various artifacts, or distortions, specifically blurring

and ghosting. Most HDR techniques rely on perfectly aligned images, but this condition is rarely

met in real-world situations due to camera shake and moving objects (people, clouds, etc.).

Consequently, there is a great need for methods that align images in a stack by compensating for

their displacement [6]. However, a reliable estimation is difficult since the stack images are taken

at varying exposures and thus yield severe brightness changes. A group of methods has been

proposed that assume a scene is static and that the LDR images are registered for camera motion,

only addressing the problem of scene changes. Another group of methods modifies the fusion

algorithm to account for potential sources of ghosting artifacts due to any moving objects in the

scene [4, 7]. A more elegant approach consists of a non-rigid transformation between LDR images

to address both camera motion and scene changes at the same time [5].

In this paper I develop an HDR imaging algorithm to handle the two main artifacts, blurring

and ghosting. One component is the use of the Exposure Fusion (EF) approach by Mertens et al.

[3], the aforementioned method that uses a bracketed image exposure sequence and fuses the stack

of images together to produce a tone-mapped LDR image. Since the design and construction of a

technique using HDR imaging targets handheld cameras, which do not have the same capabilities

as large CPUs or GPUs, it is also important to consider the computing power of a mobile platform.

Over the last few years, processors in mobile devices not only increased in clock speed but

also took the step of becoming multicore, increasing the raw computing power available

significantly. Programmable embedded GPUs also deliver to the demanding performance needs.

Using this computing power, I not only develop the algorithm but also implement it on a mobile

device to demonstrate its usability and extensibility over heterogeneous computing. My proposed

method both produces better images and does so more efficiently than those currently available.

4

2. Method

My research was conducted in two phases, 1. developing the core components of the algorithm

on a PC using software tools such as Matlab and OpenCV and 2. porting those components to a

mobile device platform and optimizing them for mobile devices using heterogeneous computing.

2.1 Artifact Removal

The first step was to identify the problems in HDR imaging and their sources. I found that most

cases suffered from camera movement, especially for handheld, mobile devices without tripods.

After trying to create HDR images from image stacks available on HDR imaging websites, I

realized that many of the images are not well-aligned, and blurring artifacts were common (Fig 1).

Since most of the objects in the scene are unmoving, it was not movement within the scene but of

the camera that was the source of the blurring artifacts. In Figure 2, the first four steps after the

“Start” refer to the first stage of the algorithm in aligning images.

First, each input image is converted to grayscale to generate images that show contrast

differences and then normalized. Next, using cross-correlation, each normalized contrast image is

compared to its successive image to find a matching position. Given two of the images, I1 and I2,

the cross correlation R is

 R(𝑖, 𝑗) = ∑ [𝐼1(𝑥, 𝑦) ∙ 𝐼2(𝑖 + 𝑥, 𝑗 + 𝑦)]𝑥,𝑦 (1)

where x and y correspond to image size, and the search range covering [-10,10]. The basic concept

is that by finding the cross-correlation for two different images in the input sequence, since each

is an image of the same scene, it is really equivalent to auto-correlation for the same image. My

algorithm applies the correlation function to normalized contrast images instead of the original

images with these problems, finding a matching position more efficiently and accurately. Figure 3

shows the subroutines of the steps in Figure 2 after receiving the LDR images from existing files

or a camera. Figure 4 shows the normalized contrast images in CMY (Cyan, Magenta, Yellow)

5

channels respectively, C (first image), M (second image), Y (third image). This corresponds to the

“Show normalized contrast images as a color channel” step, and it shows the results for debugging

purposes (Figure 3). Compared to the left image before adjustment, the right image shows images

are aligned, with clear black lines as a result (Figure 4). The output will be described later (Figures

7 and 8).

Fig. 1. The top left image is the simple HDR image using exposure fusion. The top right shows

the portion of the HDR image enlarged to clearly show the blurring artifacts. The second row

shows the original bracketed LDR exposures in the stack [13].

6

Start

Read LDR input files Or Capture LDR images

from Camera

Generate contrast images from input files

and normalized

Find the best matching position for each

images using cross correlation

Moving each pictures according to the

matching position

Detects difference using contrast images for

reference and others and generates

blending masks

Poisson Blending for each images with the

reference image using small blending mask

Exposure Fusion

Obtain final HDR image

End

Compare each picture with the

reference picture.

Pyramid blending for each image with the

contrast adjusted reference image and

blending mask

Generates blending masks using positive

and negative contrast differences.

Other objects in the image Same image

Figure 2. The flowchart of proposed method. The color of each box shows the different

programming model; blue: Java, yellow: Native, Green: RenderScript

7

< Generate contrast images from input files and normalized >

Convert color images to gray images including reference image

(The reference image is the middle one in the exposure stack)

Laplacian filtering to all gray images to generate contrast images

Normalize contrast images to process next steps

< Find the best matching position for each images using cross-correlation >

Show normalized contrast images as a color channel.

Run cross-correlation to find the best matching position for reference image and each

other image, such as [image1, image0], [image1,image2], etc.

Get the moving vector for each image except reference images.

< Moving each pictures according to the matching position >

Apply moving vector to place each images to the matching position

Regenerate image stack with new images

Fig. 3. The detailed flowchart of the first three steps after getting LDR images from Figure 2.

8

Fig. 4. A comparison between contrast images before and after alignment using the information

from cross-correlation. Each color channel shows different LDR image in exposure stack. Left

image shows misalignment. For the right image, the third and fourth images in the input sequence

moved according to moving vectors found. The right image shows well aligned.

Ghosting artifacts are caused by moving objects in a scene found in HDR images. The last

example (Figure 1,4), a static scene, showed that it is possible to produce an HDR image without

major problems even if there is no deghosting procedure, which is a conditional component in my

algorithm (Figure 2). With a new stack of aligned images, my algorithm compares each image

with a reference image and finds if there are moving objects detected in the scene using normalized

cross-correlation. There are two parameters in the formulas to check the similarity between two

images. To calculate them, first the cross-correlation for position (0,0) is examined to get the

normalized cross-correlation coefficient between the reference and aligned image. Then, the

middle image in the stack is chosen as the reference, assuming it has a median exposure time and

thus has fewer pixels with saturation problems than the other images.

It is expected that the exposure stack has balanced LDR images. If the normalized cross-

correlation coefficients, 𝑅𝑎 and 𝑅𝑏 , are less than the thresholds, Tha and Thb, respectively, it

indicates that the image selected is not well matched with the reference image and the chance to

have moving objects in the scene is high. In this case, my algorithm takes the left path of the

flowchart (Figure 2).

9

𝑅𝑎 = ∑ (𝐼1(𝑥, 𝑦) ∙ 𝐼2(𝑥, 𝑦))/√∑ 𝐼1(𝑥, 𝑦)2 ∙ ∑ 𝐼1(𝑥, 𝑦)2
𝑥,𝑦𝑥,𝑦𝑥,𝑦 (2)

𝑅𝑏 = ∑ (𝐼1
′(𝑥, 𝑦) ∙ 𝐼2

′(𝑥, 𝑦))/√∑ 𝐼1
′(𝑥, 𝑦)2 ∙ ∑ 𝐼1

′(𝑥, 𝑦)2
𝑥,𝑦𝑥,𝑦𝑥,𝑦 (3)

 where

 𝐼1
′(𝑖, 𝑗) = 𝐼1

′(𝑖, 𝑗) −
1

𝑤𝑖𝑑𝑡ℎ∙ℎ𝑒𝑖𝑔ℎ𝑡
∙ ∑ 𝐼(𝑥, 𝑦)𝑥,𝑦 (4)

The left path of Figure 2 consists of two major operations, 1. generating blending masks

using positive and negative contrast differences and 2. pyramid blending for each image with the

contrast adjusted reference image and blending mask. The first operation includes three steps,

which is focused on generating a blending mask for each image detected. The first step is

generating contrast maps with positive and negative differences. In the second step, the map from

the first step and the reference image are compared to create another map of positive and negative

difference between them. For the third step, the positive difference values and (1 −

negative difference) values are multiplied to generate a mask map. The final blending mask is

created by comparing each pixel value of the mask map with the average pixel value of the mask

map. The result applying this part of algorithm can be found in the result section (Figure 10).

2.2 Porting to Mobile Platform and Optimizing

 Initially my algorithm was developed on a personal computer (PC) using software tools and

libraries, such as Matlab and OpenCV libraries. With the goal to optimize the algorithm for mobile

devices, all implementation needed to be ported on to a mobile platform. The OpenCV portion of

implementation can be reused but Matlab code portion needed to be ported over OpenCV to use

on mobile platform.

 The Nexus 7 tablet, which runs the Android 4.4 operating system, was used as for the hardware

platform, and the algorithm described in 2.1 was ported using OpenCV for Android using the

Native Development Kit (NDK), which uses C/C++ through the Java Native Interface (JNI) for

10

better performance. To further increase the quality of performance, I incorporated the native

interface for OpenCV library with ARM NEON optimization for ARMv7 and, furthermore, I also

tested the heterogeneous computing model was using RenderScript [12]. Table 1 shows the

available programming models on Android. RenderScript allows programmers to write kernels

that automatically run in parallel on the hardware selected by the RenderScript runtime, a process

not provided by OpenCV C/C++. Thus, my algorithm used the pthread library to become

multithreaded for native interface to OpenCV in order to get the maximum performance for both

GPUs and CPUs.

Development Env. Language OpenCV Automatic Parallelism

SDK Java

RenderScript

Yes

No

No

Yes

NDK C/C++

OpenGL

RenderScript

Yes

No

No

No

Yes

Yes

Tab 1. Programming Models on Android

 To use RenderScript and OpenCV for Android SDK simultaneously in an application, OpenCV

for Android SDK needs to be recompiled for use with STLport runtime. This is because the default

release of OpenCV for Android SDK uses GNU STL runtime, while RenderScript uses STLport.

Even though GNU STL runtime showed a better performance than STLport during testing,

OpenCV for Android SDK needed to be rebuilt with STLport libraries because RenderScript does

not support the version with GNU STL runtime due to licensing issues.

 Once all implementations were correctly ported I started optimizing the code. The first native

port suffered from the overhead of continuous transitions to different execution environments [11,

12]. R. Kemp et al [11] showed the possible overhead of transitions to different environments. My

11

algorithm minimized the number of transitions to maximize performance by reducing memory

copies between CPU, GPU, and other programming domains. Although the camera capture routine

could only be implemented in Java using Android SDK, all other interfaces, such as OpenCV

library and RenderScript, are implemented in the native side using NDK.

 Figure 6 shows the schematic overview of the optimization process. To minimize the transition

and memory copy, my algorithm evolved from Figure (a), (b), to (c). Comparing (a) to (b), there

are fewer transitions between native and Java execution environments and improvement according

to this change (Figure 6). Then, (c) shows even more improvement by adding control logic in the

RenderScript interface, avoiding memory copies between CPU and GPU (Figure 6). OpenCL,

which is the standard for heterogeneous computation but is not entirely available for Android at

the moment, may provide other optional configurations to achieve better performance, like

memory sharing feature by mapping [11]. However, it does reduce memory copies between GPU

and CPU and reuses memory instead of retrieving the results. Since the OpenCV library does not

allow automatic parallelism, I tested multithread interfaces in the Open CV library, and there was

a significant improvement. Finally, my algorithm’s schematic overview is shown by (d) (Figure

6). Figure 2 shows the final programming model with color indicating the execution environment:

the portion using Java is blue, the Native portion is yellow, and the RenderScript is green. Using

multithreading, allocation and retrieval in RenderScript can be run in parallel with other tasks as

long as the output of those tasks is not needed immediately (Figure 6). Since most of the work

done with RenderScript is asynchronous, it is also possible to run tasks on other threads

simultaneously, contributing to the improvement.

12

Alloc

Function

Ctrl

Function

Dalvik VM

Native

Open

CV

Render

Script

Retr

Alloc Retr

Function

Retr

Copy

Function

retr

Copy

(a) Control logic and RenderScript interface in Java

Alloc

Function

Ctrl

Function

Dalvik VM

Native

Open

CV

Render

Script

retr Alloc retr

Function

retr

Function

Ctrl

(b) Control logic and RenderScript Interface in Native

Alloc

Function

Ctrl

Function

Dalvik VM

Native

Open

CV

Render

Script

retr Alloc

retr Function

retr

Function

Ctrl

(c) Control logic in Native and RenderScript and RenderScript Interface in Native

Func

Ctrl

Function

Dalvik VM

Native

Open

CV

Render

Script

Alloc

retr Function

retr

Func

Ctrl

FuncAlloc retrThread1

Thread2

Func

Alloc

(d) Multithreaded Native interface with (c)

Fig. 6. Schematic overview of the optimization of the algorithm using OpenCV and RenderScript.

Ctrl: control, Alloc: allocation, retr: retrieval of results. The vertical changes include context

switching (JNI) overhead.

13

3. Results and Discussion

Multiple image stacks were used during testing, and to show the specific abilities of my

algorithm, a few have been chosen as examples. Figure 7 compares the output HDR image without

and with using my algorithm, left and right respectively, and the improvement is easily noticeable.

The final result of my algorithm, exposure fusion over an aligned LDR image in an exposure stack,

is shown in the second row of Figure 7.

14

Fig. 7. A comparison between the original method with artifacts to the left and with my

algorithm to the right. The second row shows the result with images aligned using my algorithm.

 Figure 8 illustrates an example of applying my algorithm to an exposure stack with a

moving object. In this case, the center image of the first row is the reference image and is

compared with the first and last image. The first image and the reference image match well and

the normalized cross-correlation coefficients are larger than the thresholds. The last image and

the reference image show a significant difference based on the normalized cross-correlation

coefficient. The blending mask, the output of the step of “Generates blending mask using

positive and negative contrast difference” (Figure 5), is shown in the third row of Figure 8. The

last row of Figure 8 show results without and with my algorithm, left and right respectively.

15

Fig. 8. An exposure stack with moving objects. The first row shows the original exposures in the

stack. The second row shows image after applying my algorithm with blending mask before

exposure fusion. The third row shows the blending mask detected. The left of bottom shows the

exposure fusion output without my algorithm; it shows the ghost of man in the right side of

image. The bottom right image shows the result with my algorithm; the area where branches

move severely show some improvement as well.

Fig. 9. Execution time comparison. The proposed method (RenderScript + Native) shows in blue

line. The native implementation for multithreaded and single threaded shows in orange and gray

lines respectively. Native (M) indicates native implementation using multithread and Native (S)

indicates native implementation with a single thread.

As for the second phase, my algorithm was optimized on a mobile platform, Android. The

method shown in Figure 6(d) is implemented using RenderScript and the multithreaded native

interface. The test results for performance improvement is shown with execution time vs. different

image sizes in Figure 9 The execution time has an almost linear relation with the image size for all

0

2

4

6

8

10

12

14

16

18

20

0.5 1.2 2 3.1 4 5

E
x
ec

u
ti

o
n
 T

im
e

(s
ec

)

Image size (MP)

Execution time v. Image size

RS+Native Native (M) Native (S)

16

three implementations even though it shows different slopes. My algorithm in RenderScript and

multithreaded native interface shows the best performance comparing to other implementation.

Furthermore, RenderScript and multithreaded implementation does not achieve the expected

performance improvement comparing to multithreaded native implementation without

RenderScript, indicating that RenderScript runtime introduces overhead even with multithreading.

The proposed implementation using RenderScript and a multithreaded native interface

improves the execution time by using multiple cores, including GPUs. As I described in 2.2, there

may be further improvements in performance with more control logic in RenderScript and fewer

transitions to the execution environment. Signal processing has potential in performing better in

the native environment, using CPUs more than GPUs when it includes more than a few sequential

logics. Even though my algorithm has left this portion of code in native implementation, there

must be a way to implement it in RenderScript without affecting the performance.

4. Conclusion and Future Work

This paper proposes an enhanced approach of HDR imaging that can identify and remove

blurring and ghosting artifacts and that has been optimized to be implemented on a mobile device

within reasonable execution time and complexity constraints. HDR imaging has been not practical

for use on handheld devices because of the assumption that the scene and objects within it are

perfectly static, and although current methods do account for some motion, they try to tackle both

types of artifacts in one step, and also the large amount of data involved prevents use on a mobile

device even further. To address these challenges, this research proposes a multi-stage approach

that first accounts for blurring artifacts and then conditionally detects and removes ghosting

artifacts. The advantage from the first phase of the proposed algorithm is that, because it uses

contrast difference maps and masks from those maps instead of the original images, it is less

17

complex comparing to other approaches that take few minutes to process the data but actually more

effective than existing methods.

In the second phase, this paper shows how to optimize the proposed algorithm on the mobile

platform using heterogeneous computation environment. This step demonstrates that the proposed

algorithm is practical and efficient in a mobile environment, while other methods take more than

few ten seconds to a few minutes to complete the same task. By using RenderScript and

multithreading, multiple computational operations run simultaneously on CPUs and GPUs to

maximize the performance of the system. Finally, the algorithm was implemented and tested on

an actual device to show how HDR imaging can be practical, like a tablet, addressing common

human errors like camera shake or moving objects without sacrificing the efficiency and quality

necessary for a mobile device.

References

[1] P. Debevec and J. Malik, “Recovering High Dynamic Range Radiance Maps from

Photographs,” in SIGGRAPH, 1997.

[2] E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, “High dynamic range imaging:

acquisition, display, and image-based lighting”, Morgan Kaufmann, 2006.

[3] T. Mertens, J. Kautz, and F. Van Reeth, “Exposure fusion,” Pacific Conf. on Computer

Graphics and Applications, pp. 382–390, Jan 2007.

[4] J. Hu, O. Gallo, K. Pulli, and X. Sun, “HDR Deghosting: How to Deal with Saturation?”

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 2013.

[5] J. Hu, O. Gallo, and K. Pulli, “Exposure stacks of live scenes with hand-held cameras”. In

ECCV, 2012

[6] H. Zimmer, A. Bruhn, and J.Weickert. “Freehand HDR imaging of moving scenes with

simultaneous resolution enhancement”. Computer Graphics Forum, 2011.

[7] O. Gallo, N. Gelfand, W. Chen, M. Tico, and K. Pulli. “Artifact-free high dynamic range

imaging”. In ICCP, 2009.

[8] N. Gelfand, A. Adams, S. Park, and K Pulli, “Multi-exposure Imaging on Mobile Devices”.

Proceedings of the international conference on Multimedia, 2010.

[9] G. Salvi, P. Sharma, and S. Raman, “Efficient Image Retargeting for High Dynamic Range

Scenes”. arXiv:1305.4544 [cs.CV], 2013.

[10] M. Tico, N. Gelfand, and K. Pulli, "Motion-blur-free exposure fusion," in 17th IEEE

International Conference on Image Processing, pp. 3321-3324, September 2010.

[11] R. Kemp, N. Palmer, T.Kielmann, and H. Bal. “Using RenderScript and RCUDA for

Compute Intensive tasks on Mobile Devices: a Case Study”. AM Ghuloum Software Engineering

(Workshops), 305-318, 2013.

18

[12] R. Membarth, O. Reiche, F. Hannig, and J. Teich, “Code Generation for Embedded

Heterogeneous Architectures on Android”. Design, Automation and Test in Europe Conference

and Exhibition (DATE), 2014.

[13] High-dynamic-range imaging, Wikipedia http://en.wikipedia.org/wiki/High-dynamic-

range_imaging

[14] K. Park, D. Park and Y. Ha, “High Dynamic Range Image Acquisition from Multiple Low

Dynamic Range Images Based on Estimation of Scene Dynamic Range”. Journal of Imaging

Science and Technology, vol. 53, no. 2, pp. 020505-1 - 020505-12, Mar. /Apr. 2009

[15] Sample HDR photos with easyHDR, http://www.easyhdr.com/examples.php

[16] Using the Histogram to Ensure you have covered the Dynamic Range of a Scene,

http://thehdrimage.com/using-the-histogram-to-ensure-you-have-covered-the-dynamic-range-of-

a-scene/

http://www.easyhdr.com/examples.php

