
Better Bounds on the Rate of Non-Witnesses of Lucas

Pseudoprimes

David Amirault

Mentor David Corwin

Project suggested by Stefan Wehmeier

1 Personal Section

One of my first memorable math experiences was when I encountered the problem “using

just a compass for drawing circles, find four points that are the vertices of a square.” I

worked on that problem obsessively, spending over 10 hours on it over the course of a single

day. This was a huge change for me because up until middle school, I had never spent

more than half an hour thinking about one problem; I would get bored and move on to

something else. When I finally saw the solution at a glance, I was positively elated. I

had previewed the beauty of mathematics that went beyond finding the answers to simple

competition problems.

This love of the simplicity and beauty of mathematics is what inspired me to get

involved with research and to continue working on my project when I got stuck. I performed

my research with MIT PRIMES, an excellent high-school research program that helped me

get in touch with a graduate student at MIT to be my research mentor. I believe there is

always something to be learned from other people, so I greatly enjoyed performing research

in a collaborative environment filled with like-minded high-school and college students.

1

I researched the efficiency of modern algorithms that test whether large integers are

prime or not. As it turns out, this question is fundamental to modern cryptography: many

modern encryption algorithms used for internet security purposes require a steady supply

of large prime numbers. Although many different primality tests are used in cryptography,

I focused on the strong Lucas pseudoprime test, which relies on concepts from algebraic

number theory. To begin working on my project, I did over a month of background reading

on algebraic number theory. In order to understand the paper that would serve as my

starting point (reference [1]), I self-studied material on quadratic fields and their respective

rings of quadratic integers, checking in with my mentor each week on my progress.

Then, the majority of my research time was spent writing new programs in MAT-

LAB to categorize, tabulate, and analyze data on non-witnesses, a key concept in prime

number tests. Common questions I asked myself included, what happens to the rate of

non-witnesses if I tweak the values of this variable? or what do the prime factorizations of

these variables have in common? For my computationally-intensive programs, which had

run times of up to 8 hours, I would leave them running overnight or while I was away at

school. Once I believed I had found a general trend across all my data, I set out to prove

the main result, which took me just over 3 weeks to work out all the individual cases. After

proving the main result, I looked for possible consequences and started working with the

Baillie-PSW primality test, which is based on the strong Lucas pseudoprime test but is

more popular due to its much lower rate of non-witnesses and increased reliability.

At the beginning of the research process, I was unsure of what to expect from a cross-

disciplinary topic that was at the intersection of algebraic number theory and computer

science. I could not imagine how the elegant but highly abstract concepts in algebraic

number theory could have any bearing on computer science, a field grounded in practicality.

However, as I discovered during my research, concepts from many different disciplines turn

2

out to be connected in unexpected ways. For example, I was shocked by the amount

of statistics involved in primality tests, which is a consequence of modern probabilistic

methods.

My project has given me a greater sense of open-mindedness with respect to fields

of study, and I highly recommend cross-disciplinary research to any high school student

interested in computer science or mathematics. Overall, research has taught me how to

continue to make progress over the course of an extended, long-term endeavor, even when

I feel as though I am completely stuck. I have learned that bouncing ideas off others can

allow me to view the problem from a new perspective. The main lessons from my research

were perseverance and maintaining a positive attitude. Given how frequently dead ends

surface in mathematical research, I consider it vital to keep trying out new ideas and going

back to old ones whenever progress stagnates.

2 Research Section

3

Abstract

Efficient primality testing is fundamental to modern cryptography for the purpose

of key generation. Different primality tests may be compared using their runtimes and

rates of non-witnesses. With the Lucas primality test, we analyze the frequency of

Lucas pseudoprimes using MATLAB. We prove that a composite integer n can be a

strong Lucas pseudoprime to at most 1
6 of parameters P,Q unless n belongs to a short

list of exception cases, thus improving the bound from the previous result of 4
15 . We

also explore the properties obeyed by such exceptions and how these cases may be

handled by an extended version of the Lucas primality test.

4

2.1 Introduction

With the advent of public-key cryptosystems in the 1970s, the demand for faster primality

tests has increased dramatically, leading to the discovery and rise in popularity of such

probabilistic algorithms as the Miller-Rabin, Lucas, and Frobenius primality tests. Given

the growing demand for large prime numbers in the field of cryptography, even modest

improvements to current algorithms may lead to increased levels of internet security. As

such, taking steps to understand more about primality tests and their rates of non-witnesses

has vast applications in modern society. We now examine the Lucas primality test and its

distribution of pseudoprimes with respect to their prime factorizations.

For P and Q fixed integers, we consider the Lucas sequences U and V defined by the

recurrence relations:

 U0 = 0, U1 = 1, Uk+2 = PUk+1 −QUk,

V0 = 2, V1 = P, Vk+2 = PVk+1 −QVk.

Let D = P 2 − 4Q and ε(n) represent the Jacobi symbol (D/n). The following is a

well-known result from which the strong Lucas pseudoprime test may be derived [2]:

Theorem 1. Let p be a prime number relatively prime to 2QD. Put p − ε(p) = 2kq with

q odd. One of the following is true:

p | Uq

or

there exists i such that 0 ≤ i < k and p | V2iq,

where U, V are the Lucas sequences of the parameters P,Q.

A composite integer n satisfying the above conditions is known as a strong Lucas

pseudoprime to parameters P and Q, or slpsp(P,Q), using the notation of Arnault [1].

5

Definition 1. The set of ordered pairs of non-witnesses (P,Q) is given by

SL(D,n) = #

(P,Q)

∣∣∣∣∣∣∣
0 ≤ P,Q < n, P 2 − 4Q ≡ D modulo n,

gcd(Q,n) = 1, n is slpsp(P,Q).


Definition 2. We define a function analogous to Euler’s totient function: the ϕD function,

whose value is equal to the order of the unit group of (O/nO), whereO is the ring of integers

of the quadratic field Q[
√
D]. ϕD is defined as

 ϕD(pr) = pr−1(p− ε(p)) for any prime p - 2D, and r ∈ N∗,

ϕD(n1n2) = ϕD(n1)ϕD(n2) for any n1 and n2 relatively prime.

Let pr11 . . . prss be the prime decomposition of an integer n > 2 relatively prime to 2D.

Put  n− ε(n) = 2kq,

pi − ε(pi) = 2kiqi for 1 ≤ i ≤ s,
with q, qi odd,

with the pi’s ordered such that k1 ≤ . . . ≤ ks.

Theorem 2 (Arnault). The number of pairs (P,Q) with 0 ≤ P,Q ≤ n, gcd(Q,n) =

1, P 2 − 4Q ≡ D modulo n and such that n is an slpsp(P,Q) is expressed by the following

formula:

SL(D,n) =
s∏

i=1

(gcd(q, qi)− 1) +

k1−1∑
j=0

2js
s∏

i=1

gcd(q, qi). (1)

In the Methods section below, we will briefly examine the process by which data was

collected using MATLAB and present a sample data table. The Results section will focus

on extending the above formula using the ϕD function and using it to improve the bound

given by Arnault [1]. A short lemma at the beginning of the Results section precedes the

main result, Theorem 3. The proof is divided into cases based on s-values, which range

6

from 1 to 4. We conclude by examining possible follow-up problems in the Future Work

section, including applications of Newton’s Method and the Baillie-PSW primality test.

2.2 Methods

Throughout the process of collecting data on the distribution of Lucas pseudoprimes, over

a dozen MATLAB programs were written. The integers less than some arbitrary bound

(100000 was used) with the highest rates of non-witnesses were grouped based on their

prime factorizations to aid with the process of generalizing to integers with different s-

values. After numerous values of D corresponding to different quadratic integer rings were

tested, patterns emerged in the prime factorizations of integers that were frequently Lucas

pseudoprimes, leading to the main result given below. Alternate primality tests, including

the Miller-Rabin and Baillie-PSW tests, were coded in MATLAB as well to be compared

to the Lucas test.

7

Table 1: Example Integers with High Rates of Non-Witnesses for D = 5

Integer Non-Witness Rate 1st Prime Factor 2nd Prime Factor 3rd Prime Factor

21 .2381 3 7

323 .4489 17 19

377 .2255 13 29

901 .1609 17 53

1081 .1785 23 47

1891 .2226 31 61

3827 .1842 43 89

4181 .1638 37 113

5671 .2478 53 107

5777 .2432 53 109

6601 .1659 7 23 41

10207 .1592 59 173

10877 .2450 73 149

11663 .3705 107 109

13861 .1879 83 167

14981 .1589 71 211

17119 .2250 17 19 53

18407 .1611 79 233

19043 .4928 137 139

25651 .2489 113 227

...

8

Figure 1: n with Non-Witness Rate Exceeding 1/6 for s = 2

• n = (k + 1) ∗ (k − 1), (D/k + 1) = 1, (D/k − 1) = −1 (twin primes case)

• n = (2k − 1) ∗ (4k − 1), (D/2k − 1) = −1, (D/4k − 1) = −1

• n = (2k + 1) ∗ (4k + 1), (D/2k + 1) = 1, (D/4k + 1) = 1

• n = (2k − 1) ∗ (4k + 1), (D/2k − 1) = −1, (D/4k + 1) = 1

• n = (2k + 1) ∗ (4k − 1), (D/2k + 1) = 1, (D/4k − 1) = −1

Figure 2: n with Non-Witness Rate Exceeding 1/6 for s = 3

• 665 = (6− 1)(6 + 1)(18 + 1), q = 32 · 37

• 3655 = (6− 1)(18− 1)(42 + 1), q = 32 · 7 · 29

• 17119 = (18− 1)(18 + 1)(54− 1), q = 33 · 317

• 20705 = (6− 1)(42− 1)(102− 1), q = 31 · 7 · 17 · 29

• 39689 = (14− 1)(42 + 1)(70 + 1), q = 34 · 5 · 72

• 76589 = (18 + 1)(30− 1)(138 + 1), q = 32 · 5 · 23 · 37

2.3 Results

Lemma 1.

SL(D,n)

ϕD(n)
=

1

2k1+...+ks
·

s∏
i=1

1

pri−1
i

·

(
s∏

i=1

gcd(q, qi)− 1

qi
+

2sk1 − 1

2s − 1
·

s∏
i=1

gcd(q, qi)

qi

)
(2)

9

Proof. From Definition 2, we have that

ϕD(n) =
s∏

i=1

ϕD(prii) =
s∏

i=1

pri−1
i (2kiqi) = 2k1+...+ks ·

s∏
i=1

qi ·
s∏

i=1

pri−1
i (3)

Combining (1) and (3) and expanding the geometric series yields the desired expression.

Theorem 3. SL(D,n) ≤ 1
6n unless one of the following is true:

n = 9 or 25

n = (2k1q1 − 1)(2k1q1 + 1)

n = (2k1q1 + ε1)(2
k1+1q1 + ε2)

n = (2k1q1 + ε1)(2
k1q2 + ε2)(2

k1q3 + ε3), q1, q2, q3 | q,

where εi means ε(pi).

Proof. For the sake of completeness, we start with the case s = 1, although such n do not

pose a significant problem to primality tests (perfect nth powers may be quickly detected

using Newton’s method).

s = 1. We know that all of the product expressions in (2) are bounded above by 1. Thus,

we have

SL(D,n)

ϕD(n)
≤ 1

2k1
·

s∏
i=1

1

pri−1
i

(1 + 2k1 − 1) =
1

pr1−1
1 .

If p1 ≥ 7, then ϕD(n) ≤ 8
7n by definition. But r1 ≥ 2 because n is composite, so SL(D,n) ≤

8
49n < 1

6n. Thus n = 9 or 25 in this case.

s = 2. Suppose rh 6= 1 for some h.

10

• qh = 1.

We know that gcd(q, qh) = 1 and
∏s

i=1
gcd(q,qi)−1

qi
= 0. Therefore, (2) reduces to

SL(D,n)

ϕD(n)
≤ 1

4k1
·

2∏
i=1

1

pri−1
i

· 4k1 − 1

3 .

If kh ≤ 2, then SL(D,n) ≤ 1
16 ·

1
3 ·

15
3 · ϕD(n) ≤ 5

48 ·
4
3 ·

6
5n = 1

6n by the definition of

ϕD(n).

If kh ≥ 3, then SL(D,n) ≤ 1
4k1
· 17 ·

4k1
3 · ϕD(n) ≤ 1

21 ·
4
3 ·

6
5n < 1

6n because ph is at

least 2khqh − 1 ≥ 7.

• qh 6= 1.

Instead, (2) gives

SL(D,n)

ϕD(n)
≤ 1

4k1
·

2∏
i=1

1

pri−1
i

·
(

1 +
4k1 − 1

3

)
.

If kh = 1, then SL(D,n) ≤ 1
4 ·

1
5 · (1 + 1) · ϕD(n) ≤ 1

10 ·
4
3 ·

6
5n < 1

6n.

If kh ≥ 2, then SL(D,n) ≤ 1
11 ·
(

1
16 + 1

3

)
·ϕD(n) < 1

6n because ph is at least 2khqh−1 ≥

11.

So r1 = r2 = 1 and n = p1p2 =
(
2k1q1 + ε1

) (
2k2q2 + ε2

)
= 2k1+k2q1q2 +2k1q1ε2 +2k2q2ε1 +

ε1ε2. Therefore n− ε1ε2 = n− ε(n) = 2k1+k2q1q2 + 2k1q1ε2 + 2k2q2ε1. But n− ε(n) = 2kq,

so if gcd(q, q1) = q1, then q1 | q | (n− ε(n)) and q1 | q2. Also, if gcd(q, q2) = q2, then q2 | q1.

Suppose q1 6= q2.

• If gcd(q, qj) = 1 for some j, then our lemma states that

SL(D,n)

ϕD(n)
≤ 4k1 − 1

3 · 4k1
·

2∏
i=1

gcd(q, qi)

qi .

11

If qj 6= 1 and kj = 1, then SL(D,n) ≤ 1
4 ·

1
3 · ϕD(n) ≤ 1

12 ·
4
3 ·

6
5n < 1

6n.

If qj 6= 1 and kj ≥ 2, then SL(D,n) ≤ 1
3 ·

1
3 · ϕD(n) ≤ 1

9 ·
12
11 ·

4
3n < 1

6n because pj is

at least 2kjqj − 1 ≥ 11.

Now consider the case where qj = 1. Let the other q be called q`. Then gcd(q, q`) =

q` =⇒ q` | qj =⇒ q` = qj , a contradiction, so gcd(q, q`) 6= q` and gcd(q,q`)
q`

≤ 1
3 .

If kj = 1, then SL(D,n) ≤ 1
4 ·

1
3 · ϕD(n) ≤ 1

12 ·
4
3 ·

6
5n < 1

6n.

If kj ≥ 2, then SL(D,n) ≤ 1
3 ·

1
3 · ϕD(n) ≤ 1

9 ·
12
11 ·

4
3n < 1

6n.

• If gcd(q, qj) 6= 1 for both j, then we know

SL(D,n)

ϕD(n)
≤ 1

2k1+k2
·

[
2∏

i=1

gcd(q, qi)− 1

qi
+

4k1 − 1

3
·

2∏
i=1

gcd(q, qi)

qi

]
.

It is true that gcd(q, q1) 6= q1 or gcd(q, q2) 6= q2 because if both were equal, then q1

would equal q2, a contradiction. Thus
2∏

i=1

gcd(q,qi)
qi

≤ 1
3 .

If k2 − k1 ≥ 1, then SL(D,n) ≤
[
1
8 ·

1
3 + 1

6 ·
1
3

]
·ϕD(n) ≤ 7

72 ·
4
3 ·

6
5n < 1

6n, so k1 = k2.

Arnault showed that the upper bound given above for SL(D,N)
ϕD(n) is a decreasing function

of k1, so we expand the product at k1 = 1:

SL(D,n)

ϕD(n)
≤ 1

4
·

[
2 ·

2∏
i=1

gcd(q, qi)

qi
− gcd(q, q1)

q1q2
− gcd(q, q2)

q1q2
+

1

q1q2

]
.

We know that ϕD(n) = 4k1q1q2, so SL(D,n) ≤ 2 · gcd(q, q1) · gcd(q, q2)− gcd(q, q1)−

gcd(q, q2) + 1. In the case of maximal ϕD(n) when ε1 = ε2 = −1, we have n = (2q1−

1)(2q2 − 1). Without loss of generality, suppose q1 is the qj for which
gcd(q,qj)

qj
≤ 1

3 .

Hence

SL(D,n)

n
≤ 2 · q1/3 · q2 − q1/3− q2 + 1

(2q1 − 1)(2q2 − 1)
=

(2q1 − 1)(2q2 − 1)− (4q2 − 5)

6(2q1 − 1)(2q2 − 1)
<

1

6 .

12

because gcd(q, q2) 6= 1 =⇒ q2 6= 1.

Finally, (2) tells us

SL(D,n)

ϕD(n)
≤ 1

2k1+k2
· 4k1 − 1

3 .

If k2 − k1 ≥ 2, then

SL(D,n)

ϕD(n)
≤ 1

4k1 · 4
· 4k1

3

and SL(D,n) ≤ 1
12 · ϕD(n) ≤ 1

12 ·
4
3 ·

6
5n < 1

6n. We have shown that r1 = r2 = 1,

k2 − k1 = 0 or 1, and q1 = q2. Thus, in the case of s = 2, the only remaining cases are

n = (2k1q1 − 1)(2k1q1 + 1) and n = (2k1q1 + ε1)(2
k1+1q1 + ε2).

s = 3. If there exists rj with rj 6= 1, then SL(D,n)
ϕD(n) ≤

1
8 ·

1
3 · (1 + 1) = 1

12 . Likewise,

if there exists qj with gcd(q, qj) 6= qj , then SL(D,n)
ϕD(n) ≤

1
8 ·
(
1
3 + 1

3

)
= 1

12 . In either case,

SL(D,n) ≤ 1
12 · ϕD(n) ≤ 1

12 ·
4
3 ·

6
5 ·

8
7n < 1

6n.

Going back to our lemma, we have

SL(D,n)

ϕD(n)
≤ 1

2k1+k2+k3
·

(
3∏

i=1

gcd(q, qi)− 1

qi
+

8k1 − 1

7

)
.

Suppose that k1 6= k3.

• If qj = 1 for some j, then SL(D,n) ≤ 1
16 ·

8
7 · ϕD(n) ≤ 1

14 ·
4
3 ·

6
5 ·

8
7n < 1

6n.

• Otherwise, if the least qj is equal to 3, then SL(D,n) ≤ 1
16 ·

(
2
3 + 1

)
· ϕD(n) ≤

1
16 ·

5
3 ·

6
5 ·

8
7 ·

12
11n < 1

6n because the least possible value for pj is 21 · 3− 1 = 5.

• Lastly, SL(D,n) ≤ 1
16 · (1 + 1) · ϕD(n) ≤ 1

8 ·
12
11 ·

14
13 ·

18
17n < 1

6n.

So k1 = k2 = k3 and n = (2k1q1 + ε1)(2
k1q2 + ε2)(2

k1q3 + ε3) with q1, q2, q3 | q.

13

s ≥ 4. We start with

SL(D,n)

ϕD(n)
≤ 1

2k1+...+k4
·

(
4∏

i=1

gcd(q, qi)− 1

qi
+

16k1 − 1

15

)
.

• If some qj = 1, then SL(D,n) ≤ 1
16 ·

16
15 · ϕD(n) ≤ 1

15 ·
4
3 ·

6
5 ·

8
7 ·

12
11n < 1

6n.

• When the two least q values are both 3, SL(D,n) ≤ 1
16 ·

(
2
3 ·

2
3 + 1

)
· ϕD(n) ≤

1
16 ·

13
9 ·

6
5 ·

8
7 ·

12
11 ·

14
13n < 1

6n.

• When the least q value is 3 but the second least q value is greater than 3, we know

SL(D,n) ≤ 1
16 ·

(
2
3 + 1

)
· ϕD(n) ≤ 1

16 ·
5
3 ·

6
5 ·

12
11 ·

14
13 ·

18
17n < 1

6n.

• Otherwise, SL(D,n) ≤ 1
16 · (1 + 1) · ϕD(n) ≤ 1

8 ·
12
11 ·

14
13 ·

18
17 ·

20
19n < 1

6n.

Therefore, if s = 4, then SL(D,n) < 1
6 .

2.4 Future Work

The exceptions for s = 2 may be handled using Newton’s Method for approximating the

roots of real functions; there are only 5 such problem cases to consider. However, when

s = 3, the number of exceptions to the 1
6n bound are too numerous to be determined with

Newton’s Method. Fortunately, in all cases except for the famous Carmichael numbers,

those composite numbers with three or more prime factors tend to have low rates of non-

witnesses when examined with the related Miller-Rabin primality test [5].

The complementary nature of the Miller-Rabin primality test and the strong Lucas test

is exploited by the Baillie-PSW primality test, which combines a Miller-Rabin test using the

parameter a = 2 with a strong Lucas test. No known composites pass this test, although

probabilistic results suggest that counterexamples do exist [3, 4]. It would be interesting to

determine specific properties that must be obeyed by all Baillie-PSW pseudoprimes. Such

14

results would also be applicable in the field of cryptography as the Baillie-PSW primality

test is very widely used; the apparent lack of non-witnesses makes the test more reliable

than the bounds on the Miller-Rabin and Lucas tests would suggest.

2.5 Acknowledgements

First and foremost, I would like to thank my mentor David Corwin for his guidance through-

out the research process. Also, I would like to recognize Dr. Stefan Wehmeier from Math-

Works for suggesting the project. This research would not have been possible without

the MIT PRIMES faculty, especially head mentor Dr. Tanya Khovanova, Chief Research

Advisor Dr. Pavel Etingof, and Program Director Dr. Slava Gerovitch.

15

References

[1] F. Arnault, The rabin-monier theorem for lucas pseudoprimes, Math. Comp. (1997),

869–881.

[2] Robert Baillie and Jr. Samuel S. Wagstaff, Lucas pseudoprimes, Math. Comp. (1980),

1391–1417.

[3] Zhuo Chen and John Greene, Some comments on baillie-psw pseudoprimes, Fibonacci

Quarterly (2003), 334–344.

[4] Carl Pomerance, Are there counter-examples to the baillie-psw primality test?, (1984).

[5] Michael O. Rabin, Probabilistic algorithm for testing primality, J. Number Theory

(1980), 128–138.

16

	Personal Section
	Research Section
	Introduction
	Methods
	Results
	Future Work
	Acknowledgements

