Section 1: Personal

How I Became Interested in Cancer Systems Biology
It began with a serendipitous encounter with a Scientific American magazine during

science class in eighth grade that discussed the idea of parallel universes. As a shocked
thirteen year-old, I had to learn more, so I watched a documentary about the
underpinnings of our universe hosted by Dr. Brian Greene, which amplified my curiosity
even more. I went on to read a myriad of books in the field by authors such as Stephen
Hawking. This exploration sparked in me an unquenchable fascination with the
universe, rapidly replacing all feelings of contempt I previously held for the field as a
child. Realizing that science could unleash unbelievable wonders filled me with a sense
of purpose and a newfound appreciation for the study, which I had previously dismissed
as mundane and full of extraneous details. No longer was “science" just a dry
term describing a body of knowledge. It became a way of life that opened
doors to exploration, adventure, and altruism in unimaginable ways.

With my exploration of theoretical physics, I learned that the mysteries of the
universe must be addressed with mathematics. If we want any kind of structure,
precision, and the ability to predict phenomena, we must implement mathematics to
define and explain what we see in nature. Many of the peers around me felt that
mathematics had no role in daily life, and was an absolutely useless subject. I could see
where they were coming from, but after delving into theoretical physics, I gained a
unique perspective as to why it’s important: it describes everything.

At the same time, I started to become interested in cancer research. After hearing
about other teenagers’ successful science fair projects, such as those of Jack Andraka,
Shree Bose, Brittany Wenger, Eric Chen, and many others, I realized that we can make
progress on biomedical challenges no matter what our age. After all, a great number of
singers and actors and artists begin their careers while they are just in middle school. So
why is it shocking when someone involves themselves in research at a young age too? I
didn’t have a PhD (and didn’t even know what that was), but luckily, I was ignorant
enough to believe I could do something. (I'll explain in a bit how I went about getting
involved!)

Furthermore, cancer was (and still is) a major cause of suffering in the world today.

And though millions of researchers are tirelessly working on understanding and treating



it, there is still a lot more to be done. Torn between wanting to go into physics and
biomedical research, I was beyond thrilled when I realized that my deep interest in
theoretical physics could actually be applied to biomedical research. In fact, it was
needed.

Let me explain. Through reading countless magazine and journal articles on cancer, I
eventually came across an interdisciplinary field of research with immense promise:
systems biology, the integration of computer science, engineering, mathematics, and
physics with biology to advance our understanding of and ability to treat disease.

Systems biology operates on the premise that biology should be studied in terms of
complex systems. Genes do not act in solo, but in concert. We must strive to understand
how networks of millions of molecular interactions give rise to cancer (and other
diseases) - and when you’re dealing with that much complexity, you need mathematics.
There is no other way.

Wanting to involve myself in research instead of just reading about it, the summer
before ninth grade, I emailed dozens of scientists from local institutions requesting an
internship position. Though I received multiple rejections, I continued reaching out, and
eventually got a positive response from a National Cancer Institute (NCI) researcher. I
spent a year working with her on identifying heritable cancer-causing genes using
computational approaches.

The next summer, I got in touch with a Johns Hopkins University (JHU) professor
and helped develop a computational strategy for finding sets of cancer-causing genes
from cancer genomic datasets.

And finally, last summer, at the National Institutes of Health (NIH), I developed a
novel computational method for predicting cancer-driving genes and pathways, which is
what this paper will go deeper into. In fact, I loved my project so much, this summer I'm
back at the NTH, continuing my investigation and algorithm development!

And with each summer, my fascination and involvement with computational /systems
biology has grown. Mathematics made biology more alive for me; it provided a potent

lens through which I could explore the world.

Adyvice for High School Students
If you want to undertake a project combining science and mathematics, use your

imagination! If there is any scientific problem that intrigues you, there is almost always



going to be mathematics required to understand and solve it. If there isn’t currently
much mathematics used, then that’s even better; find a way to make it more
mathematical. That will only increase your work’s originality and rigor. That’s what I did
with biomedical research -- except there was already a cutting-edge field involving math
and computation: systems biology. Look for the systems biology of your field, and if
there isn’t one, use your imagination. You are never too young to be innovative, so don’t
silence your creativity. You're more capable than you think!

Once you have identified a field or interest/problem to tackle, look for a mentor. I am
endlessly grateful for my incredibly supportive mentors. Without them, this project
wouldn’t have become what it is. So reach out to scientists/researchers/professors in
your area. Send them emails, or call them. Tell them about your curiosity for what they
do, and ask them if you can work with them. You will most likely have to contact many,
many people, but the most important thing is to NOT give up. Because once you find
yourself a supportive mentor, they will be your most cherished source of guidance.
Those who take you on will more than likely be extremely happy to help you, and will
actively encourage your curiosity.

Once you're on a project and settled into a lab, or even just working on your own
thing with a mentor to consult, keep yourself constantly updated to the field. If you're
working at the interface of a scientific field and math, it will probably be a very dynamic
and fast-changing area, so you want to keep up. This will exercise your imagination and
help you become an idea-machine.

Now here is something important. As I learned the hard way, doing research is very
different from reading about it. Reading a paper could take, say 45 minutes, but the
paper itself could easily contain years of work. What I'm getting at here is that
producing good scientific research is rigorous and requires resilience, which is
something you’ll have the opportunity to develop. So don’t feel distraught if you are
struggling; in fact, you're supposed to, or you’re not learning! I initially felt very
uncomfortable when confronted with math much more advanced and specialized than
what I’d learned in high school. I had to ensure my calculations were backed with
rigorous statistics to maintain scientific integrity. I learned that research is not glorious
like they show in sci-fi movies (just smash your keyboard violently and bam, a cure for

cancer! I wish.), and requires expanding your comfort zone to learn complicated math.



It’s scary, but as I learned, the rigorous math is what makes it possible to find answers to
ambitious questions.

I also learned another valuable truth: if something is your “passion,” that doesn’t
mean you feel pleasurable bliss every moment you’re engaging yourself in that activity.
The satisfaction comes in the struggle, and in the consequent growth that is a result of
venturing out of your comfort zone and feeling vulnerable every step of the way because
you’re always in unknown territory, exploring questions without answers and always,
always knowing there is more to be known. The feeling doesn’t go away, because this is
what research is. Embrace the feeling.

I would like to take a moment to emphasize that none of this would have been
accomplished without the support of my graciously generous mentors over the years.
Taking me under their wings was more than enough, but they were also beyond
enthusiastic to mentor and guide me. After experiencing firsthand what an impact such
generosity can make, I am inspired to reach out to the younger generation as I progress
in my own career as well. Those who take extra time out of their schedules to support
others when they don’t need to are the best kind of people, and will be largely
responsible for the scientific progress of the future. Thus, I encourage you to keep in

mind how you can support and inspire others while chasing your ambitious dreams!

Section 2: Research

Abstract

Devising effective strategies for treating cancer requires elucidating molecular
mechanisms through which the disease initiates and spreads. A critical step for doing so
is distinguishing driver mutations from passenger mutations, the former contributing to
tumorigenesis while the latter, though abundant, being nonfunctional. An observed
property of driver mutations is their mutual exclusivity; mutually exclusive driver genes
often share the same functional pathway, as one driver mutation in a pathway is usually
sufficient for dysregulating the pathway’s function. Though this gene-gene relationship
has been established, there is a lack of investigation of mutual exclusivity between
mutated pathways, as well as a need for improved detection of co-mutated pathways. An

accurate statistical model, balancing computational intensity and accuracy, was



developed for the evaluation of mutual exclusivity between driver genes in the human
genome across twelve cancer types. With this model, driver genes were identified for
each biological pathway and a novel algorithmic strategy based on the previous mutual
exclusivity algorithm was devised to evaluate relationships between pathways. This
strategy successfully uncovered combinations of mutually exclusive and co-occurring
dysregulated pathways, including PI3K-Akt and Ras signaling, with backing from
experimental studies. This algorithm is indispensable for elucidating tumorigenic
mechanisms and guiding combinatorial drug targeting efforts to effectively treat cancer

and mitigate resistance.

Introduction

A major challenge in cancer research is being able to distinguish driver mutations
from passenger mutations, the former contributing to tumorigenesis, while the latter,
though abundantly present, conferring no selective growth advantage to the cell.
Recently, cancer genome sequencing projects have been able to measure genomic,
transcriptomic, and proteomic levels in a vast quantity of human tumors. With the
observed heterogeneity of these sequenced tumor genomes, it is necessary to
characterize the variety of molecular features in order to identify drivers across and
within cancer types, this knowledge ultimately guiding rational therapeutic
development. Furthermore, it is known that pathways, not single genes, govern the
course of tumorigenesis. This idea is strengthened by the observed heterogeneity of
tumor genomes, which further suggests that driver mutations target sets of genes, not
single genes. Therefore, is critical to understand how driver genes interact in pathways,
and to further determine which pathways drive the initiation and progression of cancer.
This information will assist with understanding the molecular mechanisms involved in
tumorigenesis, consequently helping with designing rational treatments.

Recently, high-throughput measurement of molecular properties of cells has become
possible and resulted in large quantities of biological data. With the power of genome

analysis technologies, such as large-scale genome sequencing and microarray



measurements, the levels of thousands of different molecules can be measured
simultaneously at the genomic, transcriptomic, and proteomic levels. This leads to the
ability to gain a more effective characterization and understanding of tumor genomes.
The Cancer Genome Atlas (TCGA) is a comprehensive effort that has profiled a large
number of human tumors, including measurements of diverse characteristics of cells,
such DNA, RNA, and protein levels. Such measurements yield a rich source of “big
data”, full of informative patterns waiting to be mined. This is both a blessing and a
curse; having a rich source of information means an integrated view of tumor genomes
can be constructed, but it is also a challenge to figure out where to look among all the
noise. Therefore, the development of computational tools that can interrogate the
commonalities, differences, and emergent themes across multiple cancer types is of high
importance.

A common strategy for detecting driver mutations in cancer genomes is a simple
frequency-based technique; simply select mutations in genes that are the most recurrent
and compare this rate to the expected background mutation rate (BMR). However, this
technique is insufficient because rare mutations would have a very weak signal, and the
heterogeneity of cancer genomes deems many important drivers undetectable. This
technique also does not look at driver genes in the context of the pathways to which they
belong, which is why there may be so much heterogeneity in the first place. Tumors of
the same type can be caused by mutations in completely different genes in two different
patients.

Strategies have been developed to circumvent this problem. It has previously been
observed that driver mutations belonging to the same functional pathway are mutually
exclusive, due to one mutation being enough to disrupt the function of the pathway, as
there is no further selective pressure placed on the cell for that particular function. In
other words, it is not expected to see two driver genes belonging to the same pathway
co-mutated in a given patient. The mutual exclusivity of driver mutations has been
employed for the discovery of novel drivers as well as for the construction of oncogenic

network modules using a human protein-interaction network. Other algorithms have



been designed to predict driver pathways from genomic profiles of cancer patients by
finding highly exclusive gene sets. However, computational tools to find mutually
exclusive pathways have not been developed, and it is unknown whether such pathways
would correspond to driver pathways. If mutual exclusivity implies sufficient selective
advantage, then this property may hold true for not only gene-gene relationships, but
also pathway-pathway relationships. Furthermore, it is known that in carcinogenic
processes, dysregulated pathways do not always act in solo, but can act in tandem with
other mutated pathways to enhance tumorigenic effects. Therefore, detecting
co-occurring driver pathways in addition to mutually exclusive driver pathways in
cancer is a major challenge of interest.

First, a sufficiently accurate model for the evaluation of mutual exclusivity between
cancer mutations needs to be developed. While researchers have analyzed the mutual
exclusivity of driver mutations in countless studies, most of their methods have
employed the hypergeometric model, but this model is not accurate enough, for it does
not implement gene- and patient-specific mutation rates. The current alternative
approach is the exact permutation test, but this test is extremely computationally
intensive, consuming an unrealistic amount of time and space. Therefore, it is necessary
to achieve a compromise between computational cost and accuracy. With this, the
development of a novel algorithmic strategy for evaluation the mutual exclusivity and
co-occurrence of cellular pathways, and the evaluation of its capability to uncover driver
pathways and cooperating driver pathways, will be the next key challenge.

These algorithms will be developed to study The Cancer Genome Atlas (TCGA) data
in the form of mutation matrices consisting of single nucleotide variations (SNV’s) and
copy number variations (CNV’s) information of ~3,000 patients across twelve major
cancer types: bladder carcinoma, breast invasive carcinoma, colorectal cancer (colon
adenocarcinoma and rectum adenocarcinoma merged), glioblastoma multiforme, head
and neck squamous cell cancer, kidney renal cell carcinoma, acute myeloid leukemia,
lung adenocarcinoma, lung squamous cell cancer, ovarian carcinoma, and uterine

corpus endometrial carcinoma.



Mathematical Model for Mutually Exclusive Mutations in Cancer

To write the algorithmic strategies devised and perform statistical tests, Python 3.4.3
and R 3.0.2 were used on the Unix Operating System (OS).

The first step was to develop an accurate model for mutual exclusivity of gene
mutations across twelve different cancer types using mutation matrices incorporating
SNV and CNV data.

The format for mutation matrices for each cancer types is presented in Table 1.

[ L e [ e
1 0 0 1

sample 1

sample 2 1 1 0 1
sample 3 0 0 0 0
...sample 3K 0 0 1 0

Table 1. Mutation matrix format containing SNV and SNV data, with the rows corresponding

to each sample and the columns corresponding to each gene. A “17 indicates the presence of
an SNV or CNV, and a “07 indicates the absence of an SNV or CNV, for a given gene in a

given sample.

The SNV and CNV data was obtained from The Cancer Genome Atlas. Twelve cancer
types were analyzed (with colon adenocarcinoma and rectum adenocarcinoma merged

into one type, colorectal carcinoma) for ~23,000 genes across 2,867 patients.

#of 74 665 199 279 287 414 194 140 140 268 207
samples

Table 2. Number of samples for each cancer tvpe. BLCA: bladder carcinoma; BRCA: breast
invasive carcinoma; CRC: colorectal carcinoma; GBM: glioblastoma multiforme; HNSC: head
and neck squamous cell carcinoma; KIRC: kidnev renal cell carcinoma; LAML: acute myeloid
leukemia; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; OV: ovarian
carcinoma; UCEC: uterine corpus endometrial carcinoma. For all types, there is a grand total
of 2,876 samples.

The current, most widely-used approach for evaluating mutual exclusivity of gene
mutations is the hypergeometric test (i.e., Fisher’s exact test), in which the probability
that an n-trial sampling experiment without replacement results in exactly x successes

from a population of N items containing k successes is calculated.



While this statistical test can be applied to computing mutual exclusivity p-values in
this scenario, it does not conserve patient-specific mutation rates, thus resulting in less
accurate p-values for biological scenarios, with the presence of false negatives.

An alternative approach is the permutation test. In this technique, the null model is
generated by creating a large number of random permutations of the given mutational
profile with the condition that each profile must preserve the observed mutation rates
for each gene and sample. If mutations in a pair of genes are mutually exclusive, the
number of samples in which they are mutated will be larger than expected by chance.
The p-value is calculated by counting the number of random instances that have a larger
number of mutated samples than the observed, original mutational profile. However,
generating null profiles for each combination of genes for ~23,000 genes across 2,867
samples is impractical.

To achieve a balance between accuracy and computational cost, a variation of the
permutation test was tested: weighted sampling. Instead of generating random
mutational profiles via the permutation test, weighted sampling was used to generate a
set of random profiles with the same expected mutation rates. This approach preserves
the mutation rates for each gene and the expected mutation rate of patients, which the

hypergeometric model fails to do.

Measuring Mutual Exclusivity with Weighted Sampling

Cover size was implemented as the measure of how mutually exclusive a pair of
mutations in a pair of genes was. For a given pair of genes (g1, g2), cover size is defined
as the union of the set of patients who have a mutation in either g1 or g2. If mutations in
a given pair of genes are mutually exclusive, then the number of samples in which they
are collectively mutated, i.e., their cover size, will be larger than expected by chance.

If g1 was mutated in x patients, and g2 was mutated in y patients, then mutational
profiles were randomly permuted while conserving these mutation rates x and y.
Likewise, each patient’s mutation rate z,was preserved in the random mutational

profiles.



For each gene, 100 random mutational profiles were generated. Thus, for each pair of
genes, a set of 10,000 random instances were yielded by comparing each of the 100
mutational profiles of g1 with each of the 100 mutational profiles of g2. For each pair of
genes, the union (i.e., cover size) of samples in each pair of random profiles being
compared was then recorded as a random instance, resulting in 10,000 random
instances. Then, the actual observed cover size of the mutations in gz and g2 was
compared with the random model, and for every cover size that is greater than the
observed cover size, 1/10,000 (0.0001) is added to the p-value (initially set to 0) for

mutual exclusivity.

Mutual Exclusivity and Co-Occurrence of Driver Pathways in Cancer

Computation of 10,000 random cover sizes for each pair of pathways

For each gene in each pathway, 100 random permutations of its mutational profile were
computed using the weighted sampling method outlined previously. Then, every gene’s
corresponding random mutational profile was merged, i.e., the union operation, into a
set of 100 random mutational profiles for the entire pathway. The same was done for the
second pathway in the pair. Figure 2 is a visual example of how these random pathway

mutational profiles are generated.
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Figure 2. Above are randomly generated pathway mutation profiles composed of gene
mutation profiles from each gene member of the respective pathway. For sake of
simplicity in this example, there are four patients and each pathway consists of four
genes. For a given pathway, arandom instance is generated by merging the set of
samples containing a mutation in anv gene belonging to the pathway. This is repeated
100 times to generate 100 random pathway mutational profiles for each pathway.
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Then, the 100 permuted profiles from each pathway in a given pair were merged with

each other to produce 10,000 random profiles: for each profile belonging to Pathway 1, a

cover-size computation with each of the 100 profiles of Pathway 2 was performed. It

then follows that 100 x 100 = 10,000, yielding 10,000 random profiles. Figure 3 is a

visual of how 10,000 random
pathway mutational profiles can
be obtained for each pair of
pathways.

Computation of observed

pathway pair cover sizes

The calculation of the observed
cover size of a given pair of
pathways is identical to the
approach outlined in the previous
section. In this instance, however,
cover sizes of the observed
profiles in the mutation matrices
are computed, obtaining values
which will be compared to the

null models.
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Figure 3. Generation of 10,000 random pathway mutational profiles for each
pathway pair is possible through computing cover sizes for each of the 100
random instances in Pathway 1 and each of the 100 random instances in Pathway
2. This set of 10,000 random cover sizes is the null model for a given pathway
pair Mutually exclusive mutated pathways will have an observed cover size that
is greater than expected, while co-occurring mutated pathways will have a smaller
than expected observed cover size.

P-values of mutual exclusivity of gene mutations using my weighted sampling method

were significantly more correlated to the permutation test than those of the

hypergeometric test. Figure 4 contains two graphs displaying the correlation coefficients

of (1) hypergeometric test vs. permutation test and (2) newly devised weighted sampling

method vs. permutation test.
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Figure 4. Permutation Test vs. Hypergeometric Test and Permutation Test vs. Weighted Sampling

A subset (n=298) of the gene pairs’ mutual exclusivity tested in this project was computed in another study
[1] using the permutation test The graphs above show the correlation between the permutation test p-
values and (1) the hypergeometric test (R = 0.558794) and (2) my weighted sampling approach (R =
0.994617). The weighted sampling test was able to obtain substantially more accurate p-values than the
hypergeometric test.

Conclusion

My algorithmic procedure was able find driver pathways based on mutual exclusivity,
a task for which no other computational tools exist. In addition, this computational
procedure found co-occurring mutated driver pathways across multiple cancer types, a
task that has needed further work on improving biological certainty. It was able to
analyze all ~23,000 human genes belonging to several hundred pathways in several
thousand patients, its findings having backing from experimental studies. This tool
revealed combinatorial patterns of the cancer genome landscape, and knowledge of
these patterns is indispensable for deciphering key tumorigenic mechanisms essential
for our understanding and ability to treat cancer.

My algorithm was also capable of finding experimentally validated co-occurring
driver pathways, suggesting collateral pathways that collaborate to induce cancer
initiation and progression. Knowledge of dysregulated pathway combinations goes a
step further and provides guidance on which drug targets combinations are promising
for minimizing resistance.

Implemented in this analysis, the pathway-centric view of cancer classification
provides a potentially more statistically powerful approach for clinically relevant

classification than the gene-centric view. To this end, more investigation needs to be



carried out to confirm or refute the idea that pathway-centric mutual exclusivity and
co-occurrence hold stronger statistical signals than gene-centric mutual exclusivity and
co-occurrence.

Ultimately, this algorithm is a tool for hypothesis generation. Computational tools
provide predictive capabilities, guiding future experimental research. This approach has
yielded new insights into biology, which will inspire new biological questions, which will
in turn further our understanding of and ability to treat cancer. The immense potential
of this algorithmic tool lies in its ability to point experimental researchers in a rational
direction when deciphering tumorigenic mechanisms and designing new therapeutic

platforms for treating cancer.
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