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Abstract: Cellular processes are the result of a complex network of molecular 

interactions, scripted for within the organism’s DNA. The study of these interactions 

and their properties characterize an essential aspect of network biology. Networks 

within natural life can be defined by mathematical characteristics and computational 

modeling common to all networks, but certain properties of biological networks, such 

as robustness, are subject to greater variability. Robustness, ability of an organism to 

withstand change, can be environmental, as well as genetic. I sought to develop an 

experimental model to study the relationship of environmental and genetic robustness, 

as it pertains in natural, not theoretical, systems displaying variability. To accomplish 

this, a sample of 18 diverse, wild strains of Saccharomyces cerevisiae were selected for 

study. S. cerevisiae is a strong model organism, as its metabolic network is well-

documented in literature, subject to influence by genome and environment, diversified 

across strain in carbon breadth, and fundamentally similar to other metabolic networks. 

Single-cell sorting and measurement with optical density were done on mutagenized 

populations. Differences in survivorship (p-value = 4.7772 x 10-6) and growth rates 

between mutant and control populations were analyzed with scientific computing in R. 

It was demonstrated that the breadth of a sample’s variation needs to be wide, for 

significance within studies on robustness in natural systems to be established. Works to 

improve the experimental model for studying environmental and genetic robustness, as 

well as in exploration into the genomics behind natural variation, are ongoing. 
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Personal Statement 

 I have always tried my best to be a young woman fueled by her imagination and 

driven up by her desire to innovate. Through my young life, each book page nimble 

fingers turned opened a new chamber in the labyrinth of my mind. Each impromptu 

science experiment or mad technological tinkering was a feather at my back. I found 

happiness in exploration and in loving those around me, but things changed. I was a 

4th grader. My mom was diagnosed with severe lymphatic cancer, and, before my eyes, 

the wax of my base was melting away. I was a child, and I had to stand by, as my 

mother battled her way through revolving treatments of chemotherapy and radiation. I 

felt helpless. The science behind her medicine was a mystery to me. All I knew was her 

treatments made her ill, and my hope for her began to fall away with the strands of her 

hair. I thought I was losing my mother and losing my chance to soar. 

 But, yet again, things changed. Though she was weak, my mother held fast to her 

life. While I was feeling helpless, my mother was being lifted by a team of Herculean 

doctors. Behind those doctors, there were hardworking scientists. Their work was swift, 

silent. It is the work of ingenious scientists and doctors, which produced, for me, the 

miracle of my mother's continued life. My hope was reborn. The path I was made to 

travel, this chapter of my personal bildungsroman, connected my passion for 

innovation with my love for those around me. I want to make the world a better place, 

as cliché as it sounds. My passion in bettering my part of the universe is a symptom of 

my hope's renewal. I still hold my imaginative spirit, and I strive to innovate in the 

names of those I love. Now, I strive specifically to innovate at the intersection between 

biology and computer science. 

 However, as childhood faded to young adulthood, the STEM fields were only 

passing interests and areas of exploration of mine. Like most underclassmen in high 

school, I had nothing but vague imaginings of what my future would entail. I knew I 

wanted to make it into a good college. I knew I wanted a very self-driven career. I knew 

I loved writing, but I did not think I wanted to be a writer. I took time my freshman 

year to explore what my high school offered, and I fell in love with our FIRST Robotics 
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team. I caught a real bug for technology and engineering. My robotics team helped me 

recognize my own potential to create. Beyond robotics, I looked up to the seniors on my 

Academic Quiz Bowl team. I found many of them were members of my school’s Science 

and Technology Research Program. My 9th grade Earth Science teacher would 

encourage me to attend an informational session on the program. That session had the 

auditorium abuzz with excited freshman. We were crowded in, as a petite, blonde 

woman took hold of the microphone in the front. She introduced herself as the 

program’s coordinator. I was stunned by the eloquence and confidence of this educator, 

Maria Zeitlin. I was stunned by her stories of scientific discovery. More so, I was 

stunned by the concept of students, only a few years older than myself, achieving 

national recognition for their original work. Ms. Zeitlin promised her captivated 

audience that she helped students who were motivated to think big, and thinking big is 

what I wanted. When I was selected by Ms. Zeitlin to join that Science and Technology 

Research program, my life was changed.  

 I always try to search for educational opportunities that meet my ambitions and 

provide me with likeminded peers and guides. I found shining opportunities 

consistently in Ms. Zeitlin’s research room. I was allowed to thrive in a symposium of 

my peers under the guidance of a dedicated teacher and mentor. I was allowed to 

explore my interests using in-house research projects and local science competitions like 

the Long Island Science Congress. All the while, Ms. Zeitlin instilled in me perseverance 

and a respect for the scientific method. Biology became an intensifying interest of mine 

there and through my 10th grade AP Biology class. My sense of awe for the medicine 

that saved my mother deepened, as I learned the intricacies of life. The power of man to 

explore the means of his physical existence drew me further and further in. My passion 

for robotics still lingered, however, seemingly confusing my path. All questions of my 

earnest academic devotion withstanding, Ms. Zeitlin made science real for me and 

equipped me with tools to take flight in university level research. 

 I searched far and wide for mentorship in a university lab before finding success. 

I reached out to microbiologists, roboticists, and researchers of every discipline in-
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between. I wanted research that sparked my imagination. Ms. Zeitlin had taught me 

that passion is a requirement for true success in research. This fundamental lesson held 

me back from pursuing a lab for the sake of merely having a lab. My search took 

months of reaching out to professors without success. I reached a point of nearly giving 

up, before I stumbled upon the page for the Laufer Center for Physical and Quantitative 

Biology at SUNY Stony Brook. There, I found the page for the Rest Lab in the 

Department of Ecology and Evolution. When I read about the work being done in this 

lab, I knew it would be the right place for me to unleash an unbounded spirit of inquiry. 

The innovative methods of research in the lab joined cutting-edge technologies, like 

next-gen sequencing and robots that regulate growth environment, and the classical 

essence of biology, with investigation of variation and evolution. As if by fate, this 

would be the lab, where the researchers actually got back to me. After a single meeting 

with Dr. Joshua Rest, I found my research home for the summer of 2015.  

 In the lab, I would gain role models, such as my mentor Dr. Rest, postdocs Dr. 

Christopher Morales and Dr. Dana Opulente, and research support specialist Kash 

Bandaralage, for the kind of scientist I aspire to be. They guided me through moments 

where mistakes became revelations. Early in one experimental protocol, a population of 

the yeast I used as an experimental model died. In the same way I debug code, I 

stepped through the procedure to isolate where my mistake occurred. I regrettably 

learned the importance of having enough amino acid in a growth media. Episodes of 

learning through mistakes, experiential moments, that are reflected upon are 

irreplaceable. In particular, it is the thinking that matters. Nobel Prize winner Albert 

Szent-Gyorgyi said, “Discovery consists of looking at the same thing as everyone else 

and thinking something different.” It was a tenant of my high school research program, 

one which resonates with me deeply. This was one of many mantras instilled in me by 

that all-star teacher, Ms. Zeitlin. I learned the importance of looking beyond the journal, 

the lab bench, and the next deadline in scientific research. One needs a breadth of 

knowledge of local and world events, for one never knows from where or whom ideas 

and inspiration will be derived. In the lab, I gained an inclusive, safe space, where 
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acceptance was modeled and encouraged. Members of the lab would summon forth an 

atmosphere of sundry ideas whenever we met. My lab exemplified the value of 

diversity: collaboration. In lab, collaboration is a key component to success. I was able 

to consult my lab associates to ensure ownership of my experiments, especially of my 

mistakes. I began to further believe in mindfully powering through obstacles, because 

the unexpected will always arise to slow one down. Early on in the plate reads for my 

very first replicate, I noticed clumping occurring within 3 of my strains of yeast. I 

thought I had erred and contaminated my plates. Through trial and confusion, it 

became clear that this was an undocumented part of the strain morphologies, which 

appeared unnoticed in previous experiments. I had done nothing wrong; I discovered 

something new. I value, more now than ever, having a strong sense of curiosity. All this 

was sparked by my high school lab experience and the amazing attributes of the 

budding yeast I studied! 

 There is a movement of machines and computers to study the universe. It is, at 

its base, human, and I demand to be a part of it. One cannot dance in shallow sea waves 

and gain, instantaneously, clarity of the ocean's magnitude, but nor can one gaze into an 

expansive night sky and understand immediately the composition of the stars. 

Scientists of old would struggle to find meaning of the universe without technology as a 

reliable tool, yet goliath data loads plague my contemporaries. We are lost in cyber-

enabled space. I aim to be part of the rescue team. Moore's Law states that 

computational processing power has and will double every two years. As this is the 

case, it is the unique duty of each class of new scientists to be doubly innovative in how 

we implement the processing power allowed to us. I believe scientific computing is key. 

 Computational biology, hereby, fascinates me, and I am glad I took the leap and 

pursued it as high school research. Now, I search for it in every available avenue of my 

life. My lab experience soothed the tear I felt between my passions in technology and 

engineering and biology. My research project showed me that I will not need to sacrifice 

either of my passions in pursuing a career in biological research. Rather, the combined 

force of technology and science will have a multiplicative effect on the scope of research 
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which I can perform. I have had other opportunities to explore these fascinations. 

Beyond my lab, I was lucky enough to be in a groundbreaking program, through 

Brookhaven National Labs, to teach scientific computing to promising students. I have 

learned to never take educational opportunities for granted. With these moments 

treasured in mind, I hope to be a professor and a scientific researcher in Computational 

Biology one day. Already, I have experienced the radiance of cross-generational 

mentorship and collaboration. I imagine passing the torch of investigation’s excitement 

to younger minds will be a part of life I, one day, love.  It will be my way to change the 

world, and I know my journey starts with the following research venture. 
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Research Introduction 

Literature Review 

Network biology is an ongoing investigation into the complexes of interactions 

behind each and every cellular function (Barabási and Oltvai 2004). Computer science 

and the laws of mathematics have become critical computational tools in understanding 

network structures in living samples, but maintaining a characterization of living things 

by their subjectivity to natural change is vital. Nodes are units within a network which 

connected, linked by pathways. Network biology can be broad in what it describes; 

biological networks can be as networks of species within ecosystems to the networks of 

proteins in cells. All biological networks can gain or lose their nodes, experience 

changes in the property of their nodes, and be affected by external elements. Changes to 

cellular networks entail changes on biological systems, whether cells, tissues, systems, 

organisms, species, or ecosystems, via changes to the processes defined by the 

networks’ interactions (Proulx et al. 2005).  

Metabolism is the collection of chemical processes required to maintain life in 

any organism, and network organizations for all organisms’ metabolisms have been 

found to be fundamentally similar Metabolic networks are scale-free networks, which 

function by design principals of robustness, such as abilities to withstand internal 

defects, environmental fluctuations, and ecological niches (Jeong et al. 2000). 

Robustness is generally defined as the ability of a biological system to withstand 

disturbances. The high tolerance of metabolic networks to environmental perturbations 

is due to the high connectivity of the nodes within their complexes. If 80% of a scale-free 

network’s nodes are removed at random, the remaining 20% should withhold within a 

compact, fully-connected cluster, as the removal of numerous small degree nodes is of 

relative unimportance in a robust system (Barabási and Oltvai 2004). Multiple 

interconnected pathways exist, within an organism, for metabolism to occur, so, 

typically in spite of the fluctuation of available metabolites in environments, change is 

withstood (Soyer and Pfeiffer 2010).  This elucidates genetic robustness, the 

maintenance of phenotypic stability in the presence of mutation and a widespread 
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property of biological systems (Lehner and Kaneko 2010). A leading hypothesis for the 

evolution of genetic robustness is that it is a by-product of environmental robustness 

(de Visser et al. 2003).  Environmental heterogeneity, the variety of conditions typical to 

an environment, explains diversity seen in wild isolates of species, as specialists evolve 

in environments of static condition, environmental homogeneity, and generalists evolve 

in more temperamental environments (Kassen 2002).Although the correlation between 

environmental and genetic robustness should exist across special lines, this hypothesis 

has not been tested within naturally occurring genotypes (Szöllősi and Derényi 2009). 

Environmental robustness has been demonstrated as possessing a non-monotonic 

relationship with evolvability (Draghi et al. 2010) (Fig. 1). This non-monotonic 

relationship and its implications confound the theoretical correlation of environmental 

robustness to genetic robustness, as the noisy gene expression typical of genetically 

robust models is often more responsive and evolvable than that of non-genetically 

robust models (Lehner and Kaneko 2011). In genetically robust systems, mutations fail 

to affect vitality, and, as a result, they accumulate. A stock of cryptic genetic variation, 

available to be revealed in the face of major perturbation, is built up, conferring 

evolvability (Masel and Siegal 2009). Analysis across of these relationships, across a 

spectrum of environmental robustness, is called for within a single species. 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. A function is monotonic, if it is either entirely non-increasing or 

non-decreasing. A monotonic function may plateau, but the direction of 

its slope may never change.  

(Image created by student researcher) 
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Strains of Saccharomyces cerevisiae, a fungi commonly known as budding yeast, 

present expansive ecological, geographical, clinical and industrial distributions. They 

are a model for the study of natural diversity as it relates to adaptation in changing 

environments, environmental robustness (Carreto et al. 2008). Their metabolic networks 

are directly tied, through the availability of necessary metabolites, to immediate 

environment. A wide variety of carbon sources beyond glucose can be used to satisfy 

their metabolic needs (Bergman 2001). Strains that are able to implement a diverse 

collection of metabolites are considered generalists. Generalist strains are 

environmentally robust, as they can tolerate growth in highly variable environmental 

conditions. Within its plethora of metabolically diverse strains, S. cerevisiae has high 

conservation of metabolic and regulatory mechanisms (Sherman 2002). The study of 

budding yeasts’ metabolic networks alongside their genomes hereby provides model 

framework for investigation into the diverse metabolic networks and their relationships 

to environmental and genetic robustness. Saccharomyces cerevisiae was the first eukaryote 

to have its genome fully sequenced and has since become a model organism in the field 

of evolutionary genomics. The genome of S. cerevisiae can be manipulated with ease 

(Sherman 2002).  Its underlying gene–function relationships of metabolism have been 

established to a larger extent than most organisms (Gerlee et al. 2009). Only 

approximately 19% of budding yeast’s genes are essential to its survival in lab 

conditions (Deustcher et al. 2008). This is because the genotypes of yeast hold hidden 

genetic variation, in the way of alternative network pathways (de Visser et al. 2003). 

This availability of alternative metabolic pathways is very influential on genetic 

robustness. When Saccharomyces cerevisiae were tested in complex, rich mediums, 

alternative pathways were more influential on genetic robustness than CNV or GCV 

(Deustcher et al. 2008).  
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Rational  

 I sought to investigate how generalist strains of Saccharomyces cerevisiae 

withstand mutation compared to specialist strains. I wanted to explore how the genetic 

robustness of environmentally robust strains compared with that of non-

environmentally robust strains. Is there a relationship between environmental and 

genetic robustness, and, if so, how is that relationship defined? Multiple replicates of a 

chemical mutagenesis experiment would be carried out for this investigation, though it 

would be unclear what mutations occurred, until a model with confidence was 

achieved and genome-wide sequencing carried out. Initially, I hypothesized that the 

genetic robustness of environmentally robust strains would be greater than that of non-

environmentally robustness strains, if alternative pathways, derivative of genetic 

robustness, underlie environmental robustness. When subjects are mutagenized, 

decreases in survivorship and growth rates could be expected. As environmental 

robustness of a strain increases, the likelihood of the decreases in its mutant 

survivorship and growth rate being significant would decrease.  

Methodology 

EMS Mutagenesis Preparation  

 Lab personnel and I altered the protocol initially implemented for mutagenesis 

from Mabel and Otto 2001. 18 strains of Saccharomyces cerevisiae were chosen, on the 

basis of being wild isolates with unique environmental robustness, previously 

quantified by an associate within my lab through strain ability to metabolize different 

carbon sources (Table 1). Each strain was streaked out onto Synthetic Defined Media 

without Tryptophan (SD-Trp, Sunrise Scientific) agar plates from frozen glycerol stocks 

and allowed to grow for 48 hours in a Binder BF400 Incubator at 30°C. The strains, 

frozen in stock, had originally been obtained from the CBS Fungal  Biodiversity Centre. 

Streaked samples were inoculated into 5mL of SD-Trp and allowed to grow in a New 

Brunswick Scientific Lab Bacterial Tissue Culture Roller Drum, within the 30°C 

incubator for 12 hours. Samples underwent serial dilutions for 48 hours within SD-Trp, 

in order to ensure normalization after the freezing process. 
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Strain Carbon Breadth Environmental Breadth 

BC 187 8 48 

CBS 4054 4 21 

CBS 6131 9 48 

CBS 6872 4 21 

CBS 7764 8 48 

DBVPG 1106 10 49 

DBVPG 1788 11 — 

DBVPG 6044 10 — 

DBVPG 6765 10 — 

L_1374 9 — 

NCYC 110 4 23 

SK1 9 31 

UWOPS03-461.4 11 — 

Y12 10 51 

Y55 8 — 

YJM 975 11 55 

YJM 978 11 51 

YJM 981 8 — 

Table 1. 18 diploid wild isolates of Saccharomyces cerevisiae were selected, on the 

basis of their wide variation in carbon and environmental breadths.  

          (Data from Opulente et al. 2013) 
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EMS Mutagenesis 

Cultures were vortexed (Scientific Industries Vortex-Genie 2), and optical 

density, as a measure of cell concentration, was recorded using a Tecan Infinite® F500 

plate reader. Each culture was diluted to a concentration of 7.39 x 107 cells/mL, in 

approximately 5mL of SD-Trp. Diluted cultures were centrifuged at maximum RPM for 

2 minutes at room temperature in an Eppendorf™ Model 5810 Centrifuge. Supernatants 

were poured off, and each cell pellet was resuspended, while on ice, in 3mL of sterile 1X 

Phosphate Buffer Saline (1X PBS). 1.5mL of resuspended cells were used as ancestral 

populations, and 1 .5mL of resuspended cells were to be mutated. Samples designated 

for mutation were treated with 50uL of the ethyl methanesulfonate (EMS).  Trained lab 

personnel carried out this step, within a BSL II hood, using an Eppendorf™ Combitip. 

These precautions were taken, as EMS is an alkylating mutagen and a known 

carcinogen in mammals. At no point during the experiment did I personally handle the 

EMS. Both cell populations were placed within the 30°C incubator for 1 hour. 40uL of 

each mutant population was pipetted into 800uL of 5% (w/v) sodium thiosulfate 

solution, to inactivate the mutagen, while 40uL of each ancestral population was 

pipetted into 800uL of 1X PBS, to maintain dilution factors. Tubes with 5% (w/v) 

sodium thiosulfate were set up during incubation, to ensure the quick inactivation of 

EMS. 500uL of diluted cells were transferred into 500uL of 1X PBS. Samples were 

brought over, on ice, to a BD FACSAria™ III cell sorter, for a single cell sorting into a 

96-well cell culture plate for each strain. Three full replicates of this mutagenesis 

procedure were carried out, resulting in a total of 240 mutant samples and 48 ancestral 

samples for each strain. 
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Plate Set-Ups and Data Collection  

There were 18 plates sorted per experimental replicate, with one strain sorted per 

plate. Strains were randomly assigned to plates in each replicate. Each plate was 

prepared with 150uL of autoclaved minimal growth media per well. The growth media 

used was composed of 2X yeast nitrogen base— with ammonium sulfate and without 

amino acids— at a final concentration of 6.7g/L, D-Glucose at a final concentration of 

20g/L, as well as uracil at a final concentration of 20mg/L. In each replicate, ancestral 

cells were sorted into two randomly designated columns, while mutated cells were 

sorted into the remainder of columns. Also, two randomly selected wells within every 

plate were left without cells, in order to serve as controls with blank growth media. 

Following cell sorting, cells were allowed to grow overnight in the 30°C 

incubator. The optical densities of the sorted plates were read in the Tecan Infinite F500 

plate reader, at set time increments, through 72 hours— every 2 hours for hours 1-12, 

every 4 hours for hours 13-24, and every 8 hours for hours 25-72. This timeframe would 

allow each living sample to reach a saturation point. After the final plate reading of 

each replicate, glycerol, at a final concentration of 20% (w/v), was added before 

freezing plates at -80°C. 

 

 

 

 

 

 

 

 



2016 E=mc2  McDermott 13 
  

Initial Results 

Data was gathered, via optical density readings, within each of the experimental 

replicates. It would be analyzed predominately with code, which I was responsible for  

developing in R (Rv3.2.2). These optical densities were used to determine survivorship 

and growth curve for each sample. The survivorship of each sample was determined by 

their final saturation level. Absolute survivorship for each strain was determined by the 

number of its individuals that survived relative to the total number of its individual 

cells deposited. Absolute survivorship would be separated out into measures for 

ancestral samples and mutant samples. For each strain, total ancestral sample size was 

48 and mutant sample size was 240.  In this initial experiment, there was no clear trend 

in the differences exhibited between ancestral and mutant survivorships across the 18 

strains (Fig 2). Within some strains, absolute mutant survivorship was actually greater 

than absolute ancestral survivorship, which would be illogical with samples produced 

by the random point mutations of alkylation. The lack of trend and number of 

unfounded differences occurring in absolute survivorship hinted at the possibility of a 

significant failure in mutagenesis procedures. To investigate if mutagenesis occurred,  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Graph demonstrating absolute 

survivorship of ancestors and “mutants” 

across the 18 strains within the initial 

experiment. Ancestral survivorship is 

displayed in dark gray; “mutant” 

survivorship is displayed in light gray.  

 

(Figure produced by student researcher) 
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treatment with EMS having no effect on survivorship across strains was established as a 

null hypothesis. Treatment with EMS lowering survivorship across strains was 

established as an alternative hypothesis, and this alternative hypothesis was rejected (p-

value = 0.5007). Mutagenesis did not occur on a significant level, due to some inherent 

flaw in protocol. 

To further investigate the initial experiment, I also analyzed absolute 

survivorship across each of the experimental replicates carried out (Fig 3). It became 

clear that there were problems with strains surviving the protocol. 5 strains— CBS 6872, 

a non-environmentally robust strain, NCYC 110, a non-environmentally robust strain, 

CBS 6131, a relatively low-environmentally robust strain, SK1, a relatively low-

environmentally robust strain, and YJM 975, an environmentally robust strain— 

experienced total failure of ancestral populations within certain replicates of the 

experiment The cause of their total failure under the stresses of this protocol remains 

unclear and is under continued investigation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Altered Mutagenesis Pilot 
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Fig. 3.  

Graphs of survivorship 

of ancestors and mutants 

across the 18 strains in 

each replicate of the 

initial experiment.  

Ancestral survivorship is 

displayed in dark gray; 

mutant survivorship is 

displayed in light gray. 

 

 
(Figure produced by student researcher) 
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Altered Mutagenesis Pilot 

Protocol would need to be adapted to ensure successful mutagenesis. Achieving 

successful mutagenesis with EMS would be the sole focus of a novel pilot. It was 

realized that how significant the density gradient was between the yeast suspended in 

PBS and the EMS. In this pilot, to ensure a thorough mix of the samples and mutagen, 

samples would be inverted following the addition of EMS. All samples would be kept 

in a spinning drum throughout their hour-long incubation period with EMS.  Dilution 

of samples before the addition of EMS and concentration of EMS implemented would 

be kept constant from the previous protocol. 

 Data from the pilot mutagenesis was gathered in the same way as the 

initial experiment, with regular optical density readings. Differences in absolute 

survivorship between ancestors to mutants, across 11 surviving strains in this pilot, 

indicate that mutagenesis successfully occurred (Fig. 4). Treatment with EMS having no 

effect on survivorship across strains would remain my null hypothesis in investigating 

absolute survivorship. Treatment with EMS lowering survivorship across strains would 

remain my alternative hypothesis, and, within the pilot, the alternative hypothesis 

would be accepted (p-value = 4.7772 x 10-6). The significance of the difference observed 

across strains, between ancestral absolute survivorship and mutant absolute 

survivorship, clearly denotes that treatment with EMS worked within the pilot. 

Mutagenesis occurred, lowering absolute survivorship for mutants, as was expected.  In 

the pilot mutagenesis, 2 of 3 non-environmentally robust, 4 of 7 low-environmentally 

robust, and 1 of 8 environmentally robust strains experienced total failure. Protocol now 

simply requires alteration to address the stress tolerance levels of all strains being used. 
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Fig.4. Graph demonstrating absolute survivorship of ancestors and mutants 

across the 11 surviving strains in the pilot mutagenesis. Ancestral survivorship 

displayed in dark gray; mutant survivorship displayed in light gray.  

 

                      (Figure produced by student researcher) 
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The slope of each sample’s growth curve was calculated using the ‘grofit’(version 

1.1.1) package in R. Slope was defined as: ∆Optical Density/ Time (hours). Mean 

ancestral and mutant growth rates for each strain were determined for surviving strains 

within the pilot (Fig. 5). In all strains, with the exception of DBVPG 1106, mean mutant 

growth rates was less than those of strain ancestors, as was predicted. Within 4 of the 

strains, the difference in growth rate was significant (Table 2). It may be noted that these 

4 strains were all environmentally robust.  A possible explanation for this trend may 

relate to the higher error seen across mean growth rates for  non-environmentally and 

low-environmentally robust strains, as measures of significance are  affected by error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5. Graph demonstrating 

mean growth rates across 

11 strains within pilot 

mutagenesis.  

Ancestral growth is 

displayed in dark gray; 

mutant growth is displayed 

in light gray.  

Strains, for which the 

difference in growth rate 

between ancestors and 

mutants was significant, 

are denoted with an 

asterisk ( * ). 

 

 

* * 

* 

* 

(Figure produced by student researcher) 
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Strain p-value 

CBS 7764 0.000166* 

DBVPG 6044 0.000658* 

Y12 0.000392* 

YJM 975 0.001293* 

 

 

 

This possibility would fit predictions of the model’s trends, as non-environmentally 

robust strains, if non-genetically robust as predicted, would experience a greater 

decrease in vitality following mutagenesis. This decrease in vitality could manifest, for 

some samples, in a major decrease in growth rate. 

Relative survivorship, defined as absolute survivorship of mutants over 

ancestors, was used as a measure of genetic robustness, since it was confirmed that 

mutagenesis with EMS was successful in this pilot. It’s correlation to environmental 

breadth, as a measure of environmental robustness, was observed (Fig. 6).  In this pilot 

mutagenesis, there was a positive correlation between number of carbon and growth 

environments and relative survivorship, but, with only one replicate of data and a 

limited breadth of strains, it demonstrated poor confidence and no significance. The 

model for the number of viable carbon environments and relative survivorship 

demonstrated greater confidence than that for the number of all viable environments 

and relative survivorship. 

  

Table 2. Table containing significant p-values between strains’ ancestral and mutant mean growth rates. 

(Table produced by student researcher) 
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Fig. 6. Graph demonstrating relative survivorship, survivorship of mutants over that of ancestors, as 

it relates to the number of viable growth environments, expressed in a log scale, across the 11 strains 

which survived the pilot mutagenesis. . Total number of viable growth environments is displayed in 

circles with dark gray confidence intervals; total number of viable carbon environments is displayed 

in triangles with light gray confidence intervals. 
 

(Figure produced by student researcher) 
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Conclusion 

The metabolic network, in its already thorough documentation by scientists and 

its fundamentality in organisms, is well fit for investigating robustness of networks. 

Using the metabolic networks of diverse, wild samplings of Saccharomyces cerevisiae,  

there is much to be gained in understanding networks and how they function in 

biology. Network structures are complex, especially in their degrees of connectivity. A 

thorough analysis of these complexities is vital to building understanding of molecular, 

cellular, and special underpinnings. Adaptations and evolution can be better explained 

with network biology, but applications of network biology span beyond abstract 

notions of evolution. Within humans, key environmental disturbances uncover complex 

genetic diseases. The way in which these changes unbridle cryptic genetic variation 

becomes clearer with comprehensive knowledge of what robustness confers (Gibson 

2009). Mutations are responsible for complicating interaction between hosts and 

pathogens in cases of with infectious disease (Abdulovic et al. 2006).  The incredible 

demonstration of robustness by cancer cells, despite their appearance by stochastic 

perturbation, is clarified with understanding of genetic robustness in natural systems 

(Stelling et al. 2004). 

Future works are in progress to improve an experimental model for the study of 

natural variation and genetic robustness. A model is required which accounts for both 

the intricacies of mutagenesis and the varying tolerance thresholds of strains to artificial 

environmental stresses. Troubleshooting and resolving potential sources of error will 

allow for the preservation of my model’s environmental breadth. Furthermore, I plan to 

develop a method of normalizing mutagenized cells based on their position relative 

replication in the cell cycle, since GC-AT base pair replacement from EMS alkylation 

occurs with replication (Brown 2002).  This will improve the integrity of my model and 

the integrity of other experiments which implement EMS as a mutagen for S. cerevisiae. 

As the cell cycles of diploids cannot be synchronized, they can, alternatively, be 

categorized and gated during sorting. I will relate cell size, measured by flow 

cytometry, to the cell cycle in each strain, after staining samples with DAPI, a 
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fluorescent stain which binds to chromatin. If I find a correlation between position in 

cell cycle and cell size, I will be able to gate the mutagenized cells before single cell 

sorting, to normalize for cell cycle position. After all mutagenesis experiments with 

EMS are complete, I plan to develop and carry out protocols for other types of 

mutagenesis, in order to ensure found correlations are consistent across mutagens. 

Methyl methanesulfonate, another alkylating agent, is less effective, because of DNA 

repair, at producing large mutant populations than EMS, despite a higher mutation 

rate, so it would not be a strong choice (Rhaese and Boetker 1972). The potential of 

protocols using Ultra Violet Light are being investigated, as UV Light has been shown 

to produce many types of mutation, from frameshifts to base-pair deletions (Miller 

1985).  

To understand the mechanisms behind genetic robustness, I plan to investigation 

the results of mutagenesis with genomics. A cascade of novel questions is introduced. 

For example, how many genes and nucleotides were hit by mutations, on average, in 

each strain?  Within robust strains, do mutations occur in pathways that have known 

high connectivity or other measures of significant interest? Candidate samples, which 

will best serve to explain how robust strains handle mutation compared to non-robust 

strains, will continue to be selected for each from each mutagenesis. Having developed 

code in R (Rv3.2.2), I have and will select and pool mutant samples whose growth rate 

is within a set variation from their respective strain’s ancestral median. Much work can 

still be done in improving experimental models for the study of natural variation and 

robustness, as experimental models must be thorough and exact, as was documented 

herein, to manage the variation which gives them their strength. 
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