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1 Research Experience

It is actually impossible to explain my experience in math research without

beginning with my experience in math contests. As a relatively accomplished

contestant over my high school years, including participating the United States

of America Junior Mathematical Olympiad (USAJMO) and twice in United

States of America Mathematical Olympiad (USAMO), I fell in love with the

mathematics and the often slick and beautiful solutions in these contests. How-

ever math contest can be incredibly deceiving as in most serious mathematics

the necessary background knowledge can be quite cumbersome for high school

students. Research in analytic number theory, my mentor once joked requires a

PhD to understand. But in modern mathematics there is at least one notable

exception, combinatorics.

My path to combinatorics research was rather circuitous. I initially did

solar panel research under the tutelage of my research teachers Mr. Kurtz, Dr.

Solomon, and Mrs. Collette with a fellow future Intel Semifinalist, David Li.

As a group we initially developed the idea and then implemented a system for

collecting and then processing thousands of data points on power production and

temperature. Although this research was published, I had already fallen head

over heels in love for mathematics. In this case my research teacher Mr. Kurtz,

after a year doing topology research at Stony Brook University, recommended I

apply for MIT PRIMES program where I was able to do combinatorics research.
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MIT PRIMES-USA Program, a section of 15 students nationwide, is a group

of students who conduct mathematics research with MIT graduate students or

faculty through the use of FaceTime or Skype. Through this program I was

selected to work with Jonathan Weed, who at the time was a first year graduate

student at MIT and the topic of Bar and Arc k-Visibility Graphs was suggested

by Jesse Geneson. My mentor initially guided me through the background by

providing me with the seminal papers in the research area and discussing these

with me every week. Although the papers were quite difficult, the technical

aspects of these papers were well within my reach just from the problems I had

done in olympiads, and instead the difficultly lay in elaborate and clever nature

of these arguments. This is largely a function of the fact that number theory

and “geometry” have been studied since antiquity but modern combinatorics is

largely due to the innovations of Paul Erdos since the 1930’s and 1940’s.

The research phase of the project proved difficult. Although I (and my

mentor) made limited progress, the initial approach of using a technique of

graph minors was remarkably difficult and was only used in one of the seven

sections in my paper. The key innovation in the project came when I was sitting

in my chemistry class. Bored out of my mind I began using regular polygons to

generate a set of graphs, they had the odd property of having arbitrarily long

induced cycles. This was unusual as both me and my mentor had conjectured

that such graphs don’t exist but the construction at first was simply an odd

anomaly.

This still surprises me to this day, but a look back at this construction, with

a slight modification allowed me to show that an edge bound for SemiArc k-

Visibility Graphs is optimal, disproving a pair of open conjectures in the process.

The surprises with the configuration didn’t end here. Using this as inspiration

it followed that all SemiArc Visibility Graphs are planar, and subsequently I

gave a full classification of such graphs using this result.

Although the “utility” of the initial configuration ended at this point, this

provided a sense of confidence that was extremely useful. Within a period of

three or four weeks I proved nearly all of the remaining results in my paper, with
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the majority of results addressing unanswered questions or extending previous

results. However none of this would have been possible without my mentor’s

encouragement in helping me select which ideas appeared useful and which

questions to pursue.

This did not simply conclude my research. The remainder of the time be-

tween this end in active research and my Intel submission involved extensive

drafting of my research and then creating a presentation for my local affiliate

fair for the Intel Science and Engineering Fair (ISEF). Through the extensive

help of both my mentor and research teachers, Mr. Kurtz, Dr Solomon, Mr.

Collette, and Dr. Kramer, I was able to both check over each of the proofs and

then craft a paper that explained the necessary background and applications in

an intelligible way to a non-mathematical audience. Without their help I simply

would not have been selected as an Intel Semifinalist, Intel Science and Engi-

neering Fair Finalist, and an Outstanding Presenter at the MAA Undergraduate

Poster Session.

2 Research Section

Given the scope of results in this research I will focus on two particular results

that highlight the results which are of greatest interest. However it is first

necessary to define Bar k-Visibility Graphs, Arc k-Visibility Graphs, SemiBar

k-Visibility Graphs, and SemiArc k-Visibility Graphs.

(a) Visibility representation (b) Visibility graph (c) 1-visibility graph

Figure 1: Bar (k-)visibility
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Bar (k-)visibility graphs are defined by taking the regions to be nonintersect-

ing closed horizontal line segments in the plane (“bars”) connected by vertical

lines of sight. Requiring lines of sight to be unobstructed yields bar visibility

graphs; allowing them to intersect up to k additional bars yields bar k-visibility

graphs. Figure 1 shows a collection of bars and the corresponding visibility and

1-visibility graphs.

(a) Visibility representa-

tion (b) Visibility graph (c) 1-visibility graph

Figure 2: Arc (k-)visibility

An extension arc (k-)visibility graphs were introduced by Hutchinson [4]

and Dean et al. [2]. These are defined by taking the regions to be nonintersecting

concentric circular arcs and lines of sight to be radial line segments, which may

pass through the center of the circle. The notion of visibility and k-visibility

remain exactly the same when transferring from the context of bar (k-)visibility

graphs to arc (k-)visibility graphs. Examples of arc (k-)visibility graphs appear

in Figure 2.

Finally, I considered two important special cases of the classes defined above.

Semi-bar visibility graphs, introduced by Felsner and Massow [3], are bar vis-

ibility graphs where the left endpoints of all the bars lie on the same vertical

line. Likewise, in semi-arc visibility graphs, introduced by Babbitt et al. [1],

arcs extend in a counterclockwise direction from the same radial ray. Figure 3

gives examples of semi-bar and semi-arc visibility representations.

The first theorem I will introduce provides the first step in giving a classifi-

cation of all semi-arc visibility graphs.
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(a) Semi-arc visibility representation (b) Semi-bar visibility represenation

Figure 3

Theorem 1. All semi-arc visibility graphs are planar.

The proof of this theorem will be explained informally. First note that it suf-

fices to consider the positions where all arcs have different left radial endpoints,

as by perturbing arcs with the same radial endpoints the number of edges does

not decrease. Then using a series of reductions, which are rather technical, it

suffices to consider the case where all arcs have increasing angular argument.

To further simplify the arrangement, each endpoint of an arc was then approxi-

mated by a sufficiently large regular n-gon and using graph minors it is possible

to add arcs corresponding to vertices which are not covered. Finally this set of

“regular” configurations can be shown to be planar by explicitly drawing the

desired graph and this completes the proof.

Although the proof as explained may appear to some extent, pulled out of

thin air, this was largely motivated by noticing that the configuration with the

most edges, and therefore empirically least likely to be planar, were the highly

regular configurations. And this sketch is a natural implementation of the idea.

The second theorem concerns the expected number of edges (and the vari-

ance in the expected number of edges proved by my mentor) in a random semi-

bar k-visibility graph. Random here is defined as setting the left endpoint to

0 and varying the right endpoint at random from 0 to 1 with any i.i.d. (or for

nontechnical readers, uniformly at random.) Due to the relative simplicity of

the argument it will provided in full.
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Theorem 2. Let G be a random semi-bar k-visibility graph as defined above

and let E be its number of edges. Then E[E] =
(
n
2

)
for n ≤ k + 2 and

E[E] =
1

2
(k + 1)

(
4n− 3k − 6− 2(k + 2)

n∑
l=k+3

1

l

)
= (k + 1)(2n− o(n))

for n ≥ k + 3. Moreover, for any t ≥ 0,

P(|E − E[E]| > (k + 1)t) ≤ 2 exp

(
−2t2

n

)
.

Proof. If n ≤ k + 2, then G is the complete graph and the claims are trivial. So

suppose that n ≥ k + 3.

Since creating a random semi-bar k-visibility graphs is equivalent to draw-

ing a permutation uniformly at random, we can generate G by generating a

permutation one element at a time. In each of n rounds, we add a bar, shorter

than all those added thus far, to a semi-bar visibility representation in a random

position. Bars added in this way do not affect the visibilities already present in

the graph, so it suffices to consider those added by the addition of the new bar.

In general, the addition of a new bar adds 2k+2 edges, except when the new

bar has fewer than k + 1 bars to its right or left. If m bars have already been

added, then there are m + 1 possible positions for the new bar, each equally

likely. If m ≤ k+1, then all placements of the new bar add m edges. If m ≥ k+2,

then the addition of the new bar adds between k+ 1 and min{m, 2k+ 2} edges.

In either case the difference between the largest and smallest possible number

of additional edges is at most k + 1. Applying the Azuma-Hoeffding inequality

yields the concentration bound.

To find the expected number of edges, we apply linearity of expectation.

Suppose m bars have been added so far. If m ≤ k + 1, then as noted above

the expected number of edges associated with the new bar is m. If m > k + 1,

the expected number of edges between the new bar and bars to its right is

1
m+1

(
(m− k)(k + 1) +

∑k
`=0 `

)
, and by symmetry the total expected number

of new edges is twice this number. Summing and simplifying yields the desired

bound.
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