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Section I: The Personal 
 

Ever since I was a kid, I’ve been both fascinated and frightened by that full range 

of malicious, deadly human diseases that have no cure. The possibility of one’s body 

turning against itself, waging war on its own cells and disrupting the complex biological 

processes that keep us healthy terrified me. I found the best way to confront my fears was 

to simply learn what causes debilitating diseases like cancer and Alzheimer’s disease—

what goes wrong in our body to cause these horrible maladies, and why. Somehow, 

learning about the purely technical, scientific aspects behind the pathogenesis of these 

diseases helped to erode my sense of powerlessness. I became hopeful and naturally 

progressed to thinking about cures. I indulged my growing curiosity by getting my hands 

dirty and reading esoteric abstracts, which, with lots of help from Google, I gradually 

became able to understand.   

I found this process of research to be, dare I say it, fun. I’m someone who’s 

always loved a good puzzle, and the more I got involved with cancer research, the more I 

realized that when it comes down to it, finding treatments and cures for diseases is kind 

of like solving one giant, complicated puzzle. But sometimes, the solution to the puzzle is 

much simpler and clearer than one would think. I became intrigued by the possibility of 

finding simple solutions for infinitely complicated diseases through the process of 



	
    

connecting the dots, finding recurring motifs and patterns in human pathology. So, 

naturally, when I learned about protein misfolding, I was hooked.  

Protein misfolding is involved in up to half of all human diseases, including 

Alzheimer’s disease, Parkinson’s disease, cystic fibrosis and cancer. I was amazed to 

learn how the simple occurrence of a misfolded protein can have such vast and deadly 

complications. As I learned more about the fascinating process of protein misfolding, I 

decided that this was the topic I wanted to focus on. I resolved to tackle this complex 

field of research with the powerful tool of machine learning, a subfield of artificial 

intelligence that has made possible the emerging field of bioinformatics, and that can 

greatly expedite drug research. 

To complete this project, I did have to learn additional mathematics. Having never 

taken AP Statistics, I had to teach myself what one-sample t-tests and p-Values are and 

how to calculate them. I also had to wrap my head around the various distance-based 

calculations of molecular graphs that I ended up using in my project. However, learning 

these mathematical concepts was much less dull than it would’ve been had I learned it all 

in a classroom; somehow, the fact that I was going to apply these concepts to analyze the 

structures of real-life molecules and test the validity of a machine learning classifier I had 

created on my own made it all much more exciting. 

I performed all my research on my laptop, in the comfort of my own home, after 

learning how to program in Java from a textbook. I hope this fact encourages any student 

thinking about embarking on their own research endeavor, but who does not have all the 

resources of a university lab—you can perform some really powerful research with just 

your laptop and a basic knowledge of coding. I’d also give the following basic advice to 



	
    

students who want to undertake a project combining science and mathematics, but aren’t 

quite sure where to begin: we’re lucky to be living in an age where so many research 

papers and journals are free and accessible online, so take advantage of that! Browse 

abstracts about a general topic of interest, write down your thoughts and ideas in a 

notebook, and go from there. And don’t be afraid to have some fun with it!  

 
Section 2: The Research 

 

Abstract 

Protein misfolding is a simple phenomenon that is involved in the pathogenesis of 

a number of human diseases such as Alzheimer’s disease, Parkinson’s disease, Cystic 

Fibrosis, and cancer. Pharmacological chaperones are orally administered small 

molecules that, when bound to a misfolded protein, revert the misfolding process. To 

discover pharmacological chaperones for specific protein targets, knowledge of the 3D 

structure of the protein is required to identify exosites for the chaperone to bind to. Even 

then, most misfolded proteins do not possess natural binding sites. This project aims to 

find the structural analogues of ligands of misfolded proteins that can function as 

pharmacological chaperones. Using Java, I developed a classifier based on the support 

vector machine learning model to predict the structural similarity between two molecules 

using 2D molecular descriptors that function as similarity metrics. The classifier achieved 

accuracy greater than 90% and was used to find FDA approved drugs with high structural 

similarity to Curcumin, an amyloid beta ligand. According to the similar property 

principle, these drugs have a higher binding affinity towards amyloid beta and can 

therefore function as pharmacological chaperones. As a proof of concept, the drugs with 

highest-predicted structural similarity were entered into the SwissDock docking 



	
    

simulation with amyloid beta, producing favorable approximated Full Fitness values. An 

FDA-approved drug predicted to be a structural analogue of Curcumin by the classifier, 

Salsalate, was recently discovered to reverse protein plaque accumulation in an animal 

model of dementia. Therefore, the binary classifier is capable of finding pharmacological 

chaperones through drug repurposing and computational methods, streamlining the costly 

and often protracted drug development process. 

Protein Misfolding and Disease 

Proteins are structurally complex biological molecules that play critical roles in 

almost every biological process [1]. For a protein to be fully functional, it first must 

acquire a certain structural conformation. The misfolding of a protein will cause a loss of 

function. Proteinopathies, diseases associated with misfolded proteins, can be initiated by 

very subtle errors in folding, which could include alterations in the primary structure 

caused by mutations, partial unfolding during thermal and oxidative stress, or RNA 

modification [6]. An effective strategy for treating proteinopathies is to restore proper 

protein function by inducing proper three-dimensional structure through the binding of 

molecules known as pharmacological chaperones.  

Pharmacological chaperones are small molecules that, when bound to misfolded 

proteins, stabilize the protein against factors that could lead to misfolding and induce 

proper three-dimensional structure [3, 4]. The firm, specific binding of the 

pharmacological chaperone to any exposed, hydrophobic area on the surface of an 

unstable protein will initiate stabilization [2]. Additionally, as small molecules, 

pharmacological chaperones can cross the blood-brain barrier, which is integral for their 

application to neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s 



	
    

disease, and cystic fibrosis [6]. Such diseases are often related to the accumulation of 

protein deposits or “plaques” that are created when misfolded proteins clump together, 

leading to cell death and loss of function [3]. These plaques are known as “amyloids.”  

A method for finding pharmacological chaperones is to search for the structural 

analogues of known ligands, substrates or even inhibitors of the affected protein—

basically, molecules that are already known to be able to bind tightly to the protein. That 

way, the 3D structure of the protein does not have to be determined and the tight, secure 

binding of the pharmacological chaperone to the protein will be ensured due to its high 

structural similarity to ligands, based off of the similar property principle, which states 

that structurally similar molecules will exhibit similar physicochemical and biological 

properties [11]. This can all be accomplished through drug repurposing, which is the 

development of novel uses and applications for existing drugs, in that the molecules 

investigated for structural similarity to ligands are drugs that are already FDA-approved. 

Small Molecule Similarity Searching 

Structural similarity searching is a data mining application that serves to identify 

structural analogues of a query molecule from a database of thousands of molecules. 

Such compound databases are inexpensive and publically available. The computational 

methods behind similarity searching vary, though the majority of similarity search 

engines employ 2D molecular descriptors as the basis of their similarity calculations [8]. 

2D descriptors are essentially numerical values associated with chemical constitution that 

correlate with physical properties [10]. Many 2D descriptors are distance-based 

molecular structure descriptors that can model physical, pharmacological, and biological 

properties of molecules [16]. 



	
    

Machine Learning 

Machine learning is a branch of artificial intelligence and method for data analysis 

that allows computers to independently make predictions about previously unseen data 

through the employment of algorithms that learn iteratively and intuitively by detecting 

patterns in previous data. These algorithms are given inputs that are described by a 

certain number of attributes or “features.” The computer will give an output based on 

these features. Using machine learning, I created a classifier that can predict structural 

similarity between molecules with high accuracy and used the classifier to find 

pharmacological chaperones for a specific disease-causing misfolded protein by finding 

drugs with high structural similarity to ligands of that same protein. 

Methodology 

To create a classifier that can accurately predict structural similarity between 

molecules, a list of molecules that are structurally similar to Ibuprofen was generated 

using ChemMapper, a web server for computational drug discovery that uses 3D 

superpositioning of molecules to rank molecules from a selected database in terms of 

their structural similarity to a query molecule. The 500 compounds most similar to 

Ibuprofen were taken and labeled as the “positive” instances of the training data set of the 

classifier. Similarly, a list of compounds with structural similarity to Caffeine from the 

ZINC Traditional Chinese Medicine database of 142,148 compounds was generated. 

With the significant structural differences between Caffeine and Ibuprofen taken into 

account, the 500 compounds most similar to Caffeine were taken and labeled as the 

“negative” instances of the training data set of the classifier. Next, in Java, I implemented 

the Support Vector Machine (SVM) classifier, a machine learning algorithm and 



	
    

classification method that is widely used in bioinformatics due to its high accuracy and 

flexibility in modeling diverse sources of data [13], using the Waikato Environment for 

Knowledge Analysis application programming interface (API) to classify molecules as 

structural analogues or non-analogues of Ibuprofen.  

The features used to train the SVM algorithm were similarity metrics between 2D 

molecular descriptors of the molecules and Ibuprofen. I recorded the Simplified 

Molecular Input Line Entry System (SMILES), which encodes the chemical structure of a 

molecule into a single line of text, for every molecule in the dataset. I then input the 

SMILES for each molecule into programs I wrote in Java using the Chemical 

Development Kit (CDK), a library of Java classes for bioinformatics. These programs 

calculated certain 2D molecular descriptors of each molecule, along with the similarity 

between the 2D molecular descriptors of the molecules with Ibuprofen using similarity 

metrics. The 2D molecular descriptors used, which I won’t describe in too much detail 

here, were all either topological indices (numerical values) or a list of bits unique to each 

molecule in which structural information was encoded.  

Application to Alzheimer’s Disease 

Amyloid beta (A𝛽) is a protein that plays a significant role in the pathogenesis of 

Alzheimer’s disease. A𝛽 misfolding leads to A𝛽 aggregation, and thus the development 

of Alzheimer’s disease [19]. Curcumin is an anti-inflammatory molecule in the turmeric 

root that binds tightly to A𝛽; it has also shown to inhibit A𝛽 aggregation [20]. One 

explanation for Curcumin’s ability to inhibit A𝛽 aggregation is that it functions similarly 

to a pharmacological chaperone when binding to A𝛽—through tight, specific binding to 

the protein, conformational integrity can be restored by the molecule. However, 



	
    

Curcumin’s poor absorption in the blood stream and rapid metabolization diminishes its 

candidacy as a pharmacological chaperone.  

Due to Curcumin’s ability to bind tightly to A𝛽 and function as an A𝛽 ligand, it 

was input as a query molecule into the SVM classifier. The SMILES of 1329 FDA 

approved drugs [21] were also input into the classifier and the probabilities of the drugs 

being structural analogues of Curcumin were determined. As proof of concept, the drug 

predicted by the classifier to be the most structurally similar to Curcumin was docked 

onto A𝛽 using the Swissdock program and the binding affinity of the drug was 

calculated. Similarly, the drug predicted by the classifier to be the least structurally 

similar to Curcumin was docked onto A𝛽 using the Swissdock program and its binding 

affinity was calculated as well. 

Hesperetin, an FDA approved drug that had the highest probability of being a 

structural analogue of Curcumin out of the total list of 1329 FDA approved drugs, was 

docked onto amyloid beta using Swissdock to demonstrate its binding affinity. Similarly, 

Chlorotrianisene, an FDA approved drug that had the smallest probability of being 

structural analogous to Curcumin, was docked onto amyloid beta using Swissdock to 

demonstrate its binding affinity.  

When given a ligand and target protein, Swissdock uses a similarity metric called 

Full Fitness which measured in kcal/mol to rank the several possible conformations of the 

drug. The most negative values are ranked first, as negative Full Fitness values represent 

an energetically favorable complex of a protein and bound ligand, since the ligand would 

release energy upon binding to the protein.  



	
    

When bound to amyloid beta, the calculated Full Fitness for Hesperetin, which 

was given a probability of 0.998362 by the classifier of being a structural analogue of 

Curcumin, was -434.01 kcal/mol. The Hesperetin-A𝛽 complex is shown below in Figure 

3.2. Additionally, when bound to amyloid beta, the calculated Full Fitness for 

Chlorotrianisene, which had a probability of 1.67e-7 in terms of being structurally 

analogous to Curcumin, was only -373.07 kcal/mol.  

 

 

Figure 1: Docked conformation of Hesperetin with A𝛽.  

Results 

 5 fold cross validation was performed 50 times on the dataset and the accuracy of 

the Support Vector Machine classifier achieved was 91.08% on the training set. The 

Receiver Operating Characteristic (ROC) curve for a single run of cross validation is 



	
    

shown in Figure 2. The ROC curve demonstrates the true positive rate versus the false 

positive rate for the algorithm as the discrimination threshold is varied. The area under 

the ROC curve measures the discrimination of the classifier, which in this case is the 

ability of the classifier to correctly classify analogues and non-analogues. On average for 

the fifty trials of cross validation the area of the ROC curve was 0.9501 for the training 

set. An area of 1 represents a perfect classifier whereas a random algorithm would have 

an area of 0.5. A one-sample t-test was conducted on the null hypothesis that the 

classifier was not significantly more accurate than a random classifier. The p-value for 

this test was p<0.001. At any reasonable alpha level, I reject the null hypothesis that the 

classifier is not significantly more accurate than a random classifier. 

 

Figure 2: The ROC curve for the training set. The area under the ROC curve is 0.9501 

where an area of 1 would represent a perfect classifier. 

 

Of the drugs with the top twenty highest probabilities of being structural 

analogues of Curcumin, six drugs demonstrated significant potential of functioning as 



	
    

pharmacological chaperones of amyloid beta, either through the current uses of the drug 

or experimental evidence from other studies. These drugs are shown in Figure 4.1.  

 

 

Figure 4.1: Six drugs predicted to be structural analogues of Curcumin, along with their 

structure, function, and probabilities.  

 

Carbidopa and Levodopa, which had probabilities of 0.997 and 0.986 

respectively, are FDA approved drugs used in combination to treat Parkinson’s disease. 

Salsalate, a drug used to treat rheumatoid arthritis and given a probability of 0.990 of 

being structurally analogous to Curcumin, reduced the accumulation of tau in an animal 



	
    

model of frontotemporal dementia; tau is a protein that, when misfolded, is involved in 

the pathogenesis of Alzheimer’s disease [22]. Nisoldilpine, which was given a probability 

of 0.991 of being structurally analogous to Curcumin, was shown in a study to mitigate 

A𝛽 production in whole cells and reduce A𝛽 plaque in a mouse model of Alzheimer’s 

disease [23]. There is also in vitro evidence that Nitrendipine, an FDA approved drug that 

is used to treat primary hypertension and was given a probability of 0.985 of being 

structurally analogous to Curcumin, has led to the reduction of A𝛽 pathology and 

improved cell survival [24]. 

 Conclusion 

These results signify the first time that a machine learning algorithm has been 

utilized in the discovery of pharmacological chaperones and offers a promising future for 

the discovery of pharmacological chaperones that does not solely depend on time-

consuming and expensive screening methods. The classifier not only allows one to find 

structural analogues of a query molecule through a computationally inexpensive manner 

based solely on the atomic composition and topological features of molecules, but also 

provides a unique method for finding pharmacological chaperones without the added 

complexity of obtaining detailed knowledge of a protein’s structure.  

I present a new method for discovering pharmacological chaperones through the 

use of a machine learning classifier to discover structural analogues of known ligands of 

misfolded proteins. This classifier can also be applied to other proteinopathies such as 

Cystic Fibrosis, Parkinson’s disease and cancer. The classifier I created was used to find 

FDA approved drugs that are structural analogues of Curcumin and therefore candidates 

for pharmacological chaperones that can be utilized to restore the conformational 



	
    

integrity of amyloid beta, a misfolded protein involved in the pathogenesis of 

Alzheimer’s disease. The classifier exposes new relationships between proteins and small 

molecules through the utilization of the similar property principle and demonstrates how 

drug repurposing is one way to take advantage of this principle.  

 

References 

1. Hartl U., Bracher A., Hayer-Hartl M., Molecular chaperones in protein folding and 
proteostasis, Nature 475, 324-332 (2011) 
 
2. Singh R. L., Dar A. T., Parvaiz A., Proteostasis and Chaperone Surveillance, 172-174, 
2015 
 
3. Mahley W. R., Huang Y., Journal of Medicinal Chemistry 2012 55 (21), 8997-9008 
 
4. Oh M, Lee. J, Wang W., Lee H., Lee W., Burlak C., Im W., Hoang Q., Lim H., 
Potential pharmacological chaperones targetic cancer-associated MCL-1 and Parkinson 
disease-associated alpha-synuclein. Proceedings of the National Academy of Sciences of 
the United States of America, 111(30), 11007-11012.  
 
5. Small A. S., Proceedings of the National Academy of Sciences of the United States of 
America, 111(34), 12274–12275 
 
6. Chaudhuri, T. K., and Subhankar P. "Protein-misfolding Diseases and Chaperone-
based Therapeutic Approaches." FEBS Journal 273.7 (2006): 1331-349. 
 
7. Stefani M., Protein misfolding and aggregation: new examples in medicine and 
biology of the dark side of the protein world, 1739(1), 5-25 
 
8. Kriegel H., Schmidt T., Seidl T., 3d similarity search by shape approximation, 
Proceedings of the 5th International Symposium on Advances in Spatial Databases, 11-28  
 
9.  Thimm M., Goede A., Hougardy S., Preibner R., Comparison of 2D Similarity and 3D 
Superposition. Application to searching a conformational drug database, Journal of 
Chemical Information and Computer Sciences 44 (2004), 1816-1822 
 
10. Ghorbani M., Hosseinzadeh A. M., A new version of Zagreb indices, Filomat 26:1 
(2012), 93–100 
 



	
    

11. Hentabli H., Saeed F., Abdo A., Salim N. A New Graph-Based Molecular Descriptor 
Using the Canonical Representation of the Molecule The Scientific World Journal, vol. 
2014.  
 
12. Screening we can believe in, Nature Chemical Biology 5, 127 (2009)  
 
13. Ben-Hur A., Weston J., A User’s Guide to Support Vector Machines, Methods Mol 
Biol. 2010;609:223-39. 
  
14. Platt, J. Fast Training of Support Vector Machines using Sequential Minimal 
Optimization, in Advances in Kernel Methods – Support Vector Learning, B. Scholkopf, 
C. Burges, A. Smola, eds., MIT Press (1998). 
 
15. Ertl P., Rohde B., Selzer P., Fast Calculation of Molecular Polar Surface Area as a 
Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug 
Transport Properties 
Journal of Medicinal Chemistry 2000 43 (20), 3714-3717 
 
16. Ilić, A. & Ilić, M. Graphs and Combinatorics (2013) 29: 1403.  
 
17. Nikolíc S.,  Kovacevic G., Milicevic A., Trinajstic N., CROATICA CHEMICA 
ACTA CCACAA 76 (2) 113-124 (2003). 
 
18. Sadigh-Eteghad S., Sabermarouf B., Majdi A., Talebi M., Farhoudi M., Mahmoudi J,. 
Amyloid-Beta: A Crucial Factor in Alzheimer's Disease. Med Princ Pract 2015;24:1-10 
19. Kim B., Lyubchenko L. Y., Misfolding and Aggregation of Amyloid Beta Peptide: 
Single Molecule AFM Force Spectroscopy, Biophysical Journal, 98(3), Supplement 1, 
p190a 
 
20. Reinke AA, Gestwicki JE, Structure-activity relationships of amyloid beta-
aggregation inhibitors based on curcumin: influence of linker length and flexibility, 
Chem Biol Drug Des. 2007 Sep;70(3):206-15. 
 
21. Minikel E., List of FDA-approved drugs and CNS drugs with SMILES, 2013, 
<www.cureffi.org/2013/10/04/list-of-fda-approved-drugs-and-cns-drugs-with-smiles>. 
	
  
22. Gladstone Institutes. "Old drug offers new hope to treat Alzheimer's disease: By 
repurposing a prescription drug used to treat rheumatoid arthritis, researchers 
successfully reversed tau-related symptoms in an animal model of dementia." 
ScienceDaily. ScienceDaily, 21 September 2015. 
<www.sciencedaily.com/releases/2015/09/150921133646.htm>. 
 
23. Bachmeier C, Beaulieu-Abdelahad D, Mullan M, Paris D. Selective dihydropyiridine 
compounds facilitate the clearance of β-amyloid across the blood-brain barrier. Eur J 
Pharmacol. 2011 Jun 1;659(2-3):124-9. 
 



	
    

24. Drug repositioning for Alzheimer's disease 
Corbett A, Pickett J, Burns A, Corcoran J, Dunnett B. S, Edison P, Hagan J. J, Holmes C, 
Jones  
E, Katona C, Kearns I, Kehoe P, Mudher A, Passmore A, Shepherd N, Walsh F, & 
Ballard C. Nature Reviews Drug Discovery 11, 833-846 (November 2012) 
 

 

 

 

 


