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1. Research experience

I have always been interested in numbers and patterns, although I was not seriously

interested in mathematics until I was in middle school. During that time period, I

discovered that there was more to math than just carrying out calculations or solving

equations. I had a particularly engaging math class in 7th and 8th grade and I remember

one problem about an 8x8 chessboard with the opposing corners removed. Suppose you

want to tile this chessboard with dominoes – even though there are an even number of

squares left, this tiling is actually impossible. I was astonished by how simple the proof

was: every domino covers both a black and a white tile. Thus, if you want to cover a

subset of the board with dominoes it must have equal numbers of black and white tiles.

When you remove opposite corners, this is no longer the case.

This type of thinking opened my eyes to how powerful mathematics can be. Sometimes,

a simple insight can turn a seemingly impossible problem into an easy one. Different areas

of mathematics are full of amazing insights just like the chessboard problem, and when

these ideas are combined they allow you to solve problems that seemed unreachable

before.

As I entered high school I became interested in learning about different areas of math-

ematics but I was also interested in the research process. It was one thing to read about

mathematics, but what was inventing it like?

Eventually, this path led me to the MIT PRIMES program where I was paired up with

a graduate student to work on a project in combinatorics. The problem I worked on was

a conjecture by Prof. Richard Stanley about q-binomial coefficients, and generalization

of binomial coefficients. Fortunately, we did not have to spend much time on background

material since I had already read [Sta12] the previous year and I was able to jump into
1
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the project. My mentor had me read through some related papers concerning the topic

so that I got a good sense of the area and which directions people were interested in

exploring. One of the motivations for the project came from the Kronecker coefficients

gλµν (see [Man15]), so I also read some material on the representation theory of Sn.

Initially, most of my attempts at resolving the conjecture were misguided and I did

not make much progress. I decided to focus on edge cases where I could work out some

explicit formulas for the coefficients and study the residues modulo N , hoping that I could

make some progress there that would help with the larger problem. I found it extremely

helpful to use Sage to create programs which would output the residues I was interested

in. This dramatically sped up the process of catching errors, and also allowed me to spot

interesting patterns that hinted at the path to a proof of the conjecture. My work on edge

cases eventually proved useful, since the main technique of my proof was to use the edge

case to inductively build up a certain periodic decomposition of the residues. Once this

was done, I had a powerful theorem describing the exact structure of the residues which

made proving many of my earlier conjectures (and the main conjecture) much easier.

2. Project details

2.1. What are q-binomial coefficients? My project was in ‘enumerative combina-

torics’, which has to do with finding ways to enumerate or count the number of objects

in sets or sequences of sets.

The exact problem I was working on involved coefficients of a type of polynomial called

a q-binomial coefficient, denoted by
[
n
k

]
q
. The name and notation is not a coincidence –

these polynomials are intended to generalize binomial coefficients in the sense that when

the polynomial
[
n
k

]
q

is evaluated at q = 1 we obtain the binomial coefficient
(
n
k

)
= n!

k!(n−k)! .

We can define these by the rational expression

[n
k

]
q

=
[n]!

[n− k]![k]!
,

where [n]! =
∏n

i=1 (1− qi)/(1− q). Note here that (1 − qi)/(1 − q) = 1 + q + . . . qi−1,

so at q = 1 we obtain i – this makes is clear that evaluating
[
n
k

]
q

at 1 returns
(
n
k

)
.

These polynomials in the fraction cancel nicely when simplified, and we are left with
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a polynomial in q of degree k(n − k). These types of generalizations are known as q-

analogues in combinatorics.

One useful perspective to see why these are a good generalization of binomial coeffi-

cients has to do with finite fields. The is also the origin of the convention to use q as the

variable instead of x. Informally, a field is set of objects with two operations +,× which

behave similarly to the same operations on Q. One of the most important properties is

the existence of multiplicative inverses for nonzero elements. Here, ‘zero’ refers to the

element e so that a+ e = a for all a, which is provably unique.

While the most obvious examples, like Q, are infinite, there are also many examples

of finite fields. These must have q elements where q = pe is a prime power, and are

denoted Fq. We can take the vector space Fnq (constructed in the same way as Rn,

using a direct sum) and consider k-dimensional subspaces. Since Fnq has finitely many

elements, this means that there are a finite number of such subspaces. In fact, when

these are counted there are precisely
[
n
k

]
q

such subspaces of dimension k. The q-binomial

coefficients count subspaces while regular binomial coefficients will count subsets, creating

a parallel between the two objects.

The q-binomial coefficients routinely appear in generating function identities, partic-

ularly often in those related to Fq. A technical explanation is given by the theory of

binomial posets, which attempts to explain why certain types of generating functions like

exponential generating functions are useful while others are not. A poset is a collection

of objects with a ‘partial order’ ≤. This works very similarly to ≤ on Z, except there is

no guarantee that we can compare any two objects. A binomial poset is just a specific

type of poset with some restrictions on the objects and partial order. In particular, the

existence of the binomial poset B(q) as in [Sta12] §3.18 explains why generating functions

of the form

F (x) =
∑
n≥0

f(n)
xn

[n]!

are natural and can be of use in combinatorics. For this poset, the objects are finite

dimensional subspaces of F∞q , and the partial order is given by natural inclusions.

In [Sta12], Stanley constructs an algebra isomorphism φ taking f ∈ R(B(q)) 7→∑
n≥0 f(n) xn

B(n)
, where B(n) = [n]!. Here, R(B(q)) is the reduced incidence algebra, which
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consists of functions on intervals of B(q) which depend only on the length of the interval.

What this means is that we can translate between generating functions
∑

n≥0 f(n) xn

B(n)

and certain functions f(n) on the poset, where n is the length of some interval.

The relevance of
[
n
k

]
q

is that it is used in convolution within the reduced incidence

algebra R(B(q)), a subalgebra of the regular incidence algebra I(B(q)) taken over C.

These algebras both consist of functions from intervals in the poset to C.

In the restricted incidence algebra, there is an operation ∗ called convolution which

combines functions f, g in R(B(q)) to obtain a new function f ∗g ∈ R(B(q)). Importantly,

the convolution f ∗ g of functions in the restricted incidence algebra introduces the q-

binomial coefficient in its calculation. Implicit in the statement that φ is an isomorphism

of algebras is the statement φ(f ∗ g) = φ(f)φ(g), which shows that when we multiply

these generating functions we involve the q-binomial coefficient. As a result, the q-

binomial coefficient will make a natural appearance whenever a generating function of

the form
∑

n≥0 f(n) x
n

[n]!
is used. It also explains why we might use this type of generating

function, since the isomorphism tells us that multiplication of generating functions of this

type inherits the structure of convolution in R(B(q)). This is a good sign the generating

function will be useful, especially for functions related to Fq, since convolution in the

incidence algebra generally lends itself to combinatorial interpretation. Once we can

represent a function in the incidence algebra as a convolution of other functions, we

immediately have a generating function identity.

2.2. The project. In my project, I studied a function which counted the number of

residues of each type the coefficients of
[
n
k

]
q

have modulo N . This function, fk,R(n) is

defined as

fk,R(n) = #

{
i : [qi]

[n
k

]
q
≡ R (mod N)

}
for some fixed N ∈ N. Richard Stanley had made the following conjecture about the

function:

Conjecture 2.1. The function fk,R(n) is quasipolynomial for each N ∈ N.
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Here, quasipolynomial means that we can determine nonzero functions periodic func-

tions ci(n) of integer period Q such that

fk,R(n) = cd(n)nd + cd−1(n)nd−1 . . .+ c0(n)

for some integer d. We the call fk,R quasipolynomial of degree d.

A simple motivation for studying this function comes the regular structure of binomial

coefficients modulo N . Modulo some prime p, this is precisely described by Lucas’s

theorem. Earlier, we saw that when q = 1 we have
[
n
k

]
q

=
(
n
k

)
, so in particular

∑
0≤i≤deg[nk ]

q

[qi]
[n
k

]
q

=

(
n

k

)
.

Taking both sides modulo N , the fact that the sum of the coefficients is so structured

suggests that the individual residues of the coefficients should also have some structure.

The function fk,R(n) attempts to capture some of this structure.

It turns out that this conjecture that fk,R(n) is quasipolynomial is true, and I was able

to prove the following main theorem in [Pen17]:

Theorem 2.2. The function fk,R(n) is quasipolynomial of degree one.

This is fortunate, because it means that all of the complexity of fk,R(n) will come from

the quasiperiod Q. Unfortunately, the proven lower bound for Q grows fairly fast. When

N = pe, the asympototic for this lower bound πpe(k) is fairly simple:

logp(πpe(k)) ∼ logp logp(k) +
ψ(k)

ln p
,

where is it currently known |ψ(k) − k| ≤ C k
ln k

for k sufficiently large and C ≈ 0.006.

Assuming the Riemann hypothesis, we have ψ(k) = k +O(k
1
2
+ε) for any ε > 0.

The simplicity of fk,R(n) also makes studying the functions ci(n) easier, because we

only need to focus on c0 and c1. We can equivalently consider fk,R(n) as a set of Q

linear functions operating separately on each residue class of n (mod Q). In this context,

the constant terms are easily obtained from the first Q values of fk,R(n) and the only

interesting object is the slopes. While much more difficult to actually calculate explicitly,

I was able to prove a theorem showing that the slopes will repeat themselves several
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times over different residue classes in many cases – in this sense, the slopes have a smaller

minimal period than the constant terms do, and so this theorem greatly lowers the number

of values of fk,R(n) you need to compute to completely determine the function.

The main method I used to prove this claim was to create a decomposition of the

coefficients and prove a stronger main theorem which implies Theorem 2.2. First, divide

the coefficients in
[
n
k

]
q

into different sections:

Definition 2.3. The ith section of the q-binomial coefficient
[
n+k
k

]
q

is the sequence of

coefficients denoted by Si with jth term given by

p
(i)
≤k(j) = [qin+j]

[
n+ k

k

]
q

(mod N)

where j ∈ Z/nZ. As a special case, S0 is just a concatenation of copies of S.

The origin of the notation p
(i)
≤k(j) comes from partition functions, since the function

p≤k counting partitions with at most k parts is involved in the edge case S0. To join the

sections together, the notation ‘⊕′ was used.

Definition 2.4. Let X = (x0, . . . , x|X|−1) and Y = (y0, . . . , y|Y |−1) be finite sequences.

The concatenation operator ⊕ is defined as X ⊕ Y = (x0, x1, . . . x|X|−1, y0, y1, . . . y|Y |−1).

Then, we can make the following further decomposition of Si that proves useful:

Si = B1
i ⊕ B2

i ⊕ . . .⊕ Bli ⊕ Ri,

where the Bji are π′N(k)-length subsequences and Ri is the remainder after these l =

b n
π′
N (k)
c consecutive subsequences are removed from Si. Here, π′N(k) is a function giving a

quasiperiod of fk,R (which is unfortunately quite complicated – for details, see [Pen17]).

Informally, if we regard
[
n+k
k

]
q

as a sequence ordered by the associated exponents of q,

we can relate X =
⊕

i∈[k] Si−1⊕ (1) to its corresponding q-binomial coefficient. Here, (1)

is just a sequence only containing 1. We can index X starting at 0, obtaining[
n+ k

k

]
q

=
∑
xi∈X

xiq
i (mod N).

The benefit of all this is that I was able to prove a stronger theorem:
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Theorem 2.5. Consider the ith section Si of
[
n+k
k

]
q
. Then upon decomposing Si, we

obtain

Si = B1
i ⊕ B2

i ⊕ . . .⊕ Bli ⊕ Ri,

where l = b n
π′
N (k)
c. Then B1

i = B2
i = . . . = Bli and the change n 7→ n + π′N(k) adds an

identical sequence Bl+1
i = B0

i .

This stronger statement says that the coefficients of
[
n
k

]
q

modulo N form a series of

different periodic sequences, and the exact periodic sequences you get only depend on n

modulo the quasiperiod π′N(k) when you fix k.

The technique I used to prove this theorem was to study the edge case S0 using generat-

ing functions to show that it had the structure described by Theorem 2.5 (and also some

additional structure within Bj0), and then show that this structure extended inductively

by relating Si to S0, . . . , Si−1 through an overcounting argument.

Once I proved Theorem 2.5, I was able to use it as a powerful tool to obtain many

of the important results including the main theorem and some additional results about

the structure of Si and the slopes of the linear functions which composed fk,R(n). The

theorem allows for a good understanding of the large-scale patterns of the residues such as

periodicity, symmetries, or large patches of zeroes but unfortunately offers no information

about the individual residues. I suspect this problem is much more difficult, since it

essentially amounts to finding an explicit formula for each residue in
[
n
k

]
q

for small n

(due to the periodic nature of the residues). This seems very unlikely given that there is

no simple direct formula for the coefficients.
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