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I. Personal Experience 

 When I received the letter informing me of my selection to be published in ! =

#$%, the first thought that came to my mind was “why in the world would I receive a 

letter from the University of Chicago months after the college admissions process was 

complete”. I, like many seniors in high school, had reached a point where my thoughts 

were constantly focused on “starting college”. Now, you’re probably wondering why I 

would begin this section with this seemingly irrelevant account. You see, the essence of 

! = #$% is to “inspire high school students with some of the many possibilities for using 

mathematics to explore science”. While I opened the letter, I realized that even though I 

was very occupied with the college application process, research was the one thing that 

truly allowed me to work out of wonder, and not for some greater prize. Over the past 

few years, I have noticed that many of my research peers are driven by the desire to win 

accolades to boost their college applications. However, it is clear to me that the true 

spirit of scientific research is to use what you love and understand to explore problems 

that you don’t have answers to, and this can only be driven by sheer, childlike, curiosity. 

																																																								
†Contact: anoop_singh@brown.edu 
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 My first exposure to scientific research took place in 9th grade. I vividly 

remember shyly walking into Mr. Richard Kurtz’ freshman science research class and 

taking a seat, only to be shocked by the teacher’s high expectations. It was only my first 

day, but Mr. Kurtz acquainted me with different inventions high school students were 

creating to solve problems across the globe! It was hard to believe that at some point 

that year I would have to invent and create a machine to solve a problem impacting 

someone in my local community. My group and I started slowly, but with help from 

each other, and our teacher, we were able to successfully complete the task. It all began 

when we met Mr. Glenn Campbell, a local attorney suffering from Quadriplegia. As 

soon as we met Mr. Campbell, we noticed that a prominent problem in his life was 

managing a cluttered desk, and therefore, we decided to build a voice-activated desk to 

move various items of his that were positioned on metal bars (laptop, papers, cell-phone, 

water bottle, etc.). For example, if a client were to walk into his office, Mr. Campbell 

could say “all left” and all the items on his desk would move to the left, allowing him to 

better-interact with his client. At first, I felt that the invention was less than I had hoped 

for. However, when I saw Mr. Campbell use the desk for the first time, and experience a 

sliver of the independence he had yearned for, I felt a satisfaction that no other kind of 

work could give me. It was this feeling that drove me to continue down this path in 

research. 

 In my sophomore year of high school, I decided that I would personally benefit 

from exploring what the different areas of science had to offer. Partnering up with two 

close friends of mine (one being a fellow 2018 Regeneron STS Semifinalist), I chose to 

venture into Earth science, studying a “Cold-blob in the North Atlantic”. But I soon 

learned that Earth science research is “painfully excruciating” (which is something I 



	 3	

now look back on with a sense of hilarity). No matter how exciting the project was, I 

always felt that the grunt work was too time-consuming for anyone to have the will to 

do. Only a year into my research, I was looking to try out something I was more 

passionate about. The first field that popped into my mind was mathematics, but as a 

15-year-old sophomore I was not allowed to work in a lab. A few days had passed while 

I searched for possible areas of interest, when (at a local science fair) I met a Columbia 

University researcher by the name of Daniel Bader. Out of genuine interest for my 

project, Mr. Bader decided to take a look at our board after judging other presentations 

at the fair. I then realized that instead of switching fields, I should learn the ins and outs 

of Earth science from a professional. The following week, I nervously composed an 

email asking Mr. Bader to mentor me on the subject. 

 Working alongside my research partner, under the tutelage of Mr. Bader, turned 

out to be one of the greatest experiences I’ve had. I soon began to love the work I used 

to loathe doing, and most of this is attributed to my introduction to the MATLAB 

computing language. Throughout the different research projects that I’ve worked on 

over the years, my passion for mathematics has always been evident. However, it was 

my junior year project that truly allowed me to apply my interest in mathematical 

problem solving to scientific questions. Not only was it fun finding solutions to different 

problems, I now had the mathematical and computational tools to create the “most 

efficient” approach to discovering the solution, an interest that was a driving force in my 

senior year STS project. 

 Midway through junior year, I found myself wondering if I had discovered a 

research area that I truly loved. My passion for computer science and mathematics 

applied perfectly to Earth science problems dealing with models and statistical analysis. 
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In March, I reached out to professors performing work in this area and was surprised to 

hear back from Professor Sultan Hameed, of Stony Brook University, who needed 

someone interested in MATLAB reliant analysis to take on a few projects that would 

generally be completed by his graduate students. As soon as summer began I started to 

work on my first project, an analysis of the impact of different pressure systems on the 

precipitation in California (with a goal to create a better mathematical model for 

Californian precipitation). The work was constant, but I found myself enjoying every 

minute of it. I had completed the project extremely quickly, but unfortunately, I failed 

in my endeavor. However, in this moment of frustration, I truly learned why curiosity is 

the key to being a strong researcher. Instead of being deterred, I picked up a project my 

mentor had been wanting to focus on for a while. When I heard that he would like to 

form models predicting the state of the El Niño Southern Oscillation, I was a bit 

nervous, but I also knew that it would be a test of my drive and my desire to truly 

contribute to the solution of a scientific problem. I threw myself into the work, making 

major procedural changes a just few hours after learning about the project. The long 

summer days became even longer as I began logging seven or eight hours creating 

scripts every day. Yet, each day was more exciting than the previous one. While I made 

sure I hung out with friends when I was offline, I would also look forward to the next 

breakthrough to come in the project. Professor Hameed and I would e-mail each other 

10 times a day, anywhere from 6:00 A.M. to 4:00 A.M., discussing our personal 

analyses of the work. We continued working together because we are both driven by a 

common interest in the topics we study, something which must be present for a great 

partnership. Our work on El Niño is currently in preparation for submission to journals 

and we have already begun a few more projects in the meantime. 
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When senior year began, I noticed that the skills I learned in the summer were 

widely applicable to a variety of topics. I breezed through problems in computer science 

because I was so used to dealing with real-life problems requiring the same skills. In 

math, I found that partial differentials and topics in multivariable calculus and linear 

algebra could clearly be used to solve physical problems in Earth science. Even in a 

course I studied at Columbia University (under the Science Honors Program) I found 

that prominent ideas in physics, like the Navier Stokes equations, can tell us so much 

about Earth as we know it. The reason I began to notice all of these connections to my 

research was because of the passion I developed for my work. I truly began to treat my 

research as a part of my identity, because I chose a topic that embodied skills I loved to 

practice. Ultimately, I believe that when researching fields involving math and/or 

science, it’s not only critical to be motivated by an almost overwhelming curiosity of the 

subject matter, but equally important to have a passion for the problem-solving the 

work entails. 
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II. Research 

II.I. Layperson’s Summary 

Climate change impacts all people living on the Earth. The El Niño Southern 

Oscillation (ENSO) is a system which influences the climate around the globe. For this 

reason, it would be helpful to create a procedure for predicting ENSO each year, 

allowing the population to understand and prepare for a potential climate in their area, 

months in advance. This study developed a procedure to create predictions of ENSO 

every year. This procedure is simple, using basic statistics and computer science to 

create forecasts more accurate than those currently existing. Additionally, the study 

helped specify the relationship between the pressure systems surrounding the Pacific and 

ENSO, assisting in creating stronger predictions and allowing us to better understand 

the phenomenon. 

 

II.II. Background 

 In recent times many extreme climatic events (ECE) have wreaked havoc on 

impacted regions. Most recently are Hurricanes Harvey and Irma, two Atlantic 

hurricanes that severely impacted the United States. ECEs are often influenced by the 

El Niño Southern Oscillation (ENSO), and incorporating ENSO activity aided in 

forecasting the increase of 2017 hurricane activity in the Atlantic (Klotzbach et al. 2017). 

Because of ENSO’s influence on ECEs, accurately predicting the future of ENSO can 

not only be helpful for yearly projections of hurricane activity but also for forecasting 

broad global conditions. 
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 ENSO is a teleconnection defined as a period of irregular winds and surface 

temperatures over the eastern Pacific Ocean. It is considered to be the most influential 

climate pattern used in seasonal forecasting [National Oceanic and Atmospheric 

Administration - NOAA (2014)]. The phenomenon consists of three phases, El Niño 

(Warm), La Niña (Cold), and the neutral phase. The El Niño phase exhibits warmer 

than average sea surface temperatures (SST) off the Pacific coast of South America. It is 

also associated with a high sea level pressure (SLP) in the western Pacific. The La Niña 

counterpart is associated with anomalously cold SST in the eastern Pacific and low SLP. 

The neutral phase of ENSO is a transitional phase between El Niño and La Niña. SST 

and tropical precipitation are near average during the neutral phase, allowing other 

teleconnections to have more of an impact on climate (Trenberth, 1997). 

 

II.III. Previous Models 

Mathematical modeling of ENSO has been used in forecasting over the past 

several decades. Early approaches represented ENSO via a set of unstable equations 

where the growth of ENSO is nonlinear and unpredictable behavior is caused by chaos 

(Zebiak and Cane 1987). More recently, a linear approach to modeling the 

phenomenon has been employed, based on the idea that the random nature of ENSO is 

based on external variables. This agrees with the idea that ENSO is randomly forced, 

yet also allows a simple approach for predicting ENSO year to year (Thompson and 

Battisti 2000). The approach uses external predictors to forecast ENSO up to a year in 

advance, giving disaster planners more time to prepare for predicted ENSO events 

(Pegion et al. 2017). If a multilinear method is to be used, the main concern is finding the 
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optimal set of systems to incorporate into the models. Pegion et al. (2017) suggests that 

previous sets of systems are not holistic enough, meaning they do not collectively have 

enough influence on the regions surrounding ENSO. As a result, the study by Pegion et 

al. (2017) proposes the use of five core predictors consisting of the Pacific Meridional 

Mode, Seasonal Footprinting Mechanism, Trade Wind Charging, Western North 

Pacific SST, and the Victoria Mode (with the Pacific Meridional and Victoria Modes 

consisting of multiple attributes). The models produced by using these systems yield high 

correlations (r) with ENSO, however, the models in Pegion et al. (2017) are hindcasts and 

so the results are skewed since the regression model in their study is already fit to the 

data from the selected time period. Predictions made using hindcasts do not incorporate 

the increase in predictive error when measuring a different period of time. However, in 

this study, a forecasting procedure is being investigated which only uses prior data when 

creating an index for the following year. It would be desirable to have a forecasting 

procedure with similar prediction strength to the hindcasts of Pegion et al. (2017). 

 

II.IV. Predictors and Influence on ENSO  

In this study, I use multiple linear regression to produce forecasts for the 

December-January-February (DJF) season. This forecasting process is further discussed 

in the methodology (II.V). The set of predictors selected in this study (the Hawaiian 

High, South Pacific High, South Atlantic High, and Azores High) are known as the 

Subtropical Highs (STH). Each of these systems has a strong presence during the DJF 

months, justifying their inclusion (Figure 1). However, the main reason these predictors 

are included in the study is that they mark the origins of the trade winds, which have 
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been found to influence ENSO state through wind speed in the ENSO region 

(Anderson et al. 2013). 

This study uses the Centers of Action (COA) approach to determine the 

relationship between these moving pressure systems and ENSO. The term COA was 

coined by Rossby et al. (1939) to describe prominent pressure systems such as the four 

listed above. A COA is described by its latitude, longitude, and pressure, thus helping us 

understand how all aspects of pressure systems may impact surrounding regions. Using 

the COA approach, the latitude, longitude, and pressure of a pressure system are 

separate features of that system, which allows for many different sets of predictors to be 

considered. For example, the Hawaiian High Latitude may be considered separate from 

the Hawaiian High Pressure. The many sets of predictors used in this study, along with 

the placement of the systems surrounding the ENSO region, embodies the idea of a 

holistic approach and can potentially increase both model accuracy and interpretability. 

It should be especially noted that that the predictors chosen in this study were 

not considered by Pegion et al. (2017). While they implemented a set of 7 predictors, 

leading to 127 possible models, in my study 4 systems (with attributes of latitude, 

longitude, and pressure, as well as the months averaged to produce the predictor) were 

implemented. Therefore, under this procedure a set of 216 variables were newly 

available for each system, allowing me to consider a total of 216% − 1 = 46655 

predictors. Assuming an accurate and efficient variable selection procedure exists (as 

investigated in this study), this will potentially lead to a more feature-rich and accurate 

modeling framework. 

While the improvement of forecasts was a main aspect of the study, another goal 

was to use selected features to better understand ENSO. For this reason, I used the 
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pressure system data (see Figure 1) not only in models but also to generate insight into 

the influence of global climate systems on ENSO. I found that the physical elements of 

the predictors explained the statistical relationships between ENSO and the STHs (see 

section II.VI. Results and Discussion). 

 

Figure 1: Average pressure of the June-July-August season from 1980-2000. Adapted by author from University 
Department of Atmospheric Sciences. 

 
 

II.V. Methodology 

There are various index definitions used to determine the strength of ENSO. 

Because of its observed impact on both SST and SLP, ENSO indices can be measured 

by either variable. There are four defined indices based on SST in the mid-Pacific, which 

include ENSO 1+2, ENSO 3, ENSO 3.4, and ENSO 4. These indices are calculated 

based on temperature anomalies across the given area and are therefore defined for 

different spatial locations (Figure 2). I also considered the Southern Oscillation Index (SOI) 

because it relies on SLP, demonstrating the atmospheric aspect of ENSO. All ENSO 

indices can be obtained from the National Oceanic and Atmospheric Association Physical 
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Sciences Division (NOAA 2017) while the SOI index can be found through the Australian 

Bureau of Meteorology (ABM 2017). I constructed models treating only ENSO 3.4 as the 

dependent variable, to assess consistency and accuracy among multiple modeling 

frameworks. The other representations were disregarded as ENSO 3.4 has been 

commonly used in recent times. 

 
Figure 2: Regions of ENSO. Obtained from the National Oceanic and Atmospheric Association (NOAA) – 

(www.ncdc.noaa.gov/teleconnections/enso/indicators/sst.php) 
 

 
 In this study, the DJF season for ENSO 3.4 is being forecasted using the STH 

variables from the previous year. For every year being forecasted, a statistical model is 

developed based on the past 30 years. For example, when forecasting the 1979 season, a 

model is developed using data from 1949-1978. The steps for forecasting each year are 

as follows: 

1. The different attributes of the STH systems are averaged over 2, 3, and 4 month 

periods. One example of this would be the Hawaiian High Pressure averaged 

over May-June-July-August (this variable is denoted as HHPRS_MJJA). 

2. All the variables are assembled in a list and a set of heuristically-determined 

correlation thresholds is applied, to pick two variables that can be used to create 
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a model for 1979. There are two requirements for a set of variables to be used in 

creating a forecast. Firstly, both STH variables for 1948-1977 must have a 

correlation greater than 0.42 (- < 0.02) with ENSO 3.4 (DJF) from 1949-1978. 

Secondly, the variables must also have a mutual correlation less than 0.42. After 

the restrictions are applied, several sets of predictors remain which have 

variables that are mutually independent but highly correlated with the following 

ENSO season. 

3. A multilinear regression is applied to each set of 2 predictors found in step 2. 

The regression coefficients found after applying the regression represent a model 

for the next year’s ENSO. Once the 1978 variables are substituted into the 

equation, the model produces an output predicting the 1979 ENSO season. 

4. Step 3 is repeated with the next set of predictors which pass the restrictions in 

step 2. All predictions for the 1979 ENSO are compiled and averaged to 

produce an ensemble forecast. 

5. Steps 2-4 are repeated for all seasons from 1980-2018. The results are then 

statistically compared to the existing data for ENSO. 

 
I have created scripts, in the MATLAB computing language, to run the procedure 

above and produce figures displaying a comparison of predictions and Observed-

ENSO. The main results can be found in the following section of this paper (see 

II.VI. Results and Discussion), but a copy of the scripts can also be found at: 

https://github.com/ASingh-2000/A-Multilinear-Approach-to-Forecasting-ENSO. 
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II.VI. Results and Discussion 

 The procedure described above was tested in 5 different scenarios. The variables 

involved in the forecast also rely on time (specifically the month), and so, I simulated forecasting 

ENSO (DJF) during the previous June, July, August, September, and October. For June, it was 

found that forecasts cannot be created for every year (when testing 1979-2018) because in 

specific years the variables only including months before July did not pass the restrictions in step 

2 (see previous page). However, forecasts for July, August, September, and October were not 

only created but are extremely strong. For each of these months, the correlation was statistically 

significant at - < 0.01. The following table outlines the values produced by the analysis. 

Table 1: Statistical comparisons of the forecasts with the observed ENSO 3.4 from 1979-2018. 

Month Mean Absolute 

Error (MAE) 

Root Mean Square 

Error (RMSE) 

Correlation with 

Observed ENSO 

2018 

Prediction 

July 0.68 0.85 0.64 -0.48 

August 0.61 0.76 0.74 -0.37 

September 0.57 0.71 0.79 -0.42 

October 0.54 0.70 0.81 -0.50 

 
 From Table 1, not only is it clear that the forecasting procedure proposed in this 

study produces accurate predictions of ENSO, but the predictions are high even at 

longer lead times, comparable to hindcasts such as Pegion et al. (2017) and other 

forecasting methods such as that in Zhang et al. (2017). Furthermore, all predictions for 

the 2018 ENSO (DJF) season, which occurred recently, were correct in forecasting what 

appeared to be a neutral to weak La Niña phase. On the visual side of things, Figure 3 

conveys the strong fit between my procedure’s ENSO predictions and observed phase. 
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Figure 3: Forecasts of ENSO 3.4, from 1979-2018, using the method proposed by this study. The figures 
simulate forecasting in (and are blind to data post) July (A), August (B), September (C), and October (D). 

 
 Both graphically and statistically, it seems that the procedure outlined in this 

study is preferable to other proposed forecasting methods. Graphically, the forecasts 

seem to fit ENSO extremely well. Statistically speaking, the correlations and errors in 

Table 1 are preferable to other forecasting methods available. Furthermore, the 

approach outlined in this paper is computationally simple, with script runtimes in 

MATLAB being less than a minute (you may test this for yourself, as the repository link 

is attached in section II.V. Methodology). 

 Given the accuracy of this forecasting procedure, it is important to address the 

relationship between STHs and ENSO. The strength of the predictors in the study is 

due to the physical relationship between variations in the Highs and ENSO. The trade 

A B 

C D 
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winds are surface winds found in the tropics. They originate at the STHs and flow west 

into the tropical region (NOAA 2004). The El Niño phenomenon is triggered by the 

trade winds in a process called wind-induced charging, which involves the increase of 

heat in the Pacific Ocean due to trade wind variations (Anderson et al. 2013). In order to 

demonstrate how attributes of the STHs impact the SST, and in turn ENSO index 

values, composite graphs were created through the NOAA Physical Sciences Division 

website. The predictor that had the strongest correlation with the observed ENSO index 

for each pressure system was identified. The years for which the variable’s value was one 

standard deviation above the mean were used to form a composite SST anomaly of the 

ENSO region along with a composite anomaly of the Zonal Wind. This was also done 

for years when the variable’s value was one standard deviation below the mean. For 

example, the following are the composites for the South Pacific High Pressure averaged 

over April, May, June, and July: 

 

 
Figure 4: Composite anomalies of the ENSO region. A depiction of SST of the ENSO region when the 
South Pacific High pressure was abnormally high (Top Left). Zonal Wind when the South Pacific High 
pressure was abnormally high (Top Right). SST when the South Pacific High pressure was abnormally 

low (Bottom Left). Zonal Wind when the South Pacific High pressure was abnormally low (Bottom Right). 
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In Figure 4, it is clear that abnormally high South Pacific High pressure 

corresponds to negative wind velocity and in turn a lower SST, while an abnormally low 

South Pacific High pressure corresponds to a positive wind velocity and a positive SST. 

A relationship exists between all the STHs, the wind above the ENSO region, and the 

SST in the region (through the trade winds). This physical relationship (trade wind 

generation at STHs impacting ENSO) is a strong reason why these pressure systems 

have been successful in this study and should be used in the future for forecasts 

beginning even earlier in the year. Earlier forecasts are important for our understanding 

of global climate and disaster planning, and the year-round relationship between these 

systems and ENSO can be useful in forming them. 

 

II.VII. Conclusion 

The goal of this study was to form a stronger approach to predicting ENSO than 

previously available. Accurate procedures, such as that found in this paper, would allow 

us to not only predict ENSO earlier in the year but also form better predictions, giving 

the general population a longer time to prepare for ENSO and stronger predictions to 

base these preparations on. I found that using the Subtropical Highs, along with their 

attributes, in a multiple linear regression produces more accurate forecasts than models 

that currently exist. This is likely due to the fact that these STHs contribute to the trade 

winds, which is known to have an influence on ENSO. The identification of this 

relationship is another key finding in this paper because it offers an unconventional 

understanding of ENSO: specific systems like the STHs seem to contribute to ENSO 

phase, and so ENSO should not be considered a truly randomly forced system. 
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