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Personal Section 
 
I’ve always had a fond interest in mathematics since I was young. From my parents quizzing me 

arithmetic on late evening walks to mastering the abacus to learning number theory, mathematics has 

constantly perplexed me. It always seems as if the amount of mathematics I’ve learned is never enough. 

But so are the applications mathematics has in our daily lives, from splitting the bill to Simpson’s 

Paradox to rocket science, the beauty of numbers integrating seamlessly into our natural world is a 

spectacle to appreciate on its own.  

 

My interests in artificial intelligence didn’t emerge until high school when I became fascinated by 

speculations of how machine learning could “magically” drive cars and predict geological events. That’s 

when I began exploring this field, using open libraries such as Tensorflow to create simple applications 

such as image recognition. But I didn’t understand how and why these applications worked the way they 

did, and that’s when I began to delve into its mathematical principles. 

 

This coincided with my research opportunity at the University of California, Santa Barbara through the 

Research Mentorship Program (RMP), where I worked with fellow peers and graduate students on 

computer vision tasks that required machine learning. There, prior to doing any research on our assigned 

tasks, we spent two to three weeks just learning the mathematical principles that drive the foundations of 

artificial intelligence. At the time, the highest math I have learned was AP Calculus, but most of the math 

I worked with involved multivariable calculus and linear algebra. Both subjects had a mildly steep 

learning curve given the amount of time I had to master them, but that was just the beginning. Each week 

we would also have literature review sessions, where we would discuss published work relevant to our 

field, but the math itself was sometimes overwhelming. One main takeaway I had from this experience 
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was using math as a formal language to generalize concepts. For example,  I would attempt to trace out 

the mathematical operations involved with simple neural networks to grasp a full understanding, but its 

complexity increased exponentially as new layers and nodes were being added that there were simply too 

many to keep track of by hand. Nonetheless, this mathematical background in machine learning gave me 

a concrete foundation to understanding how I would be modifying neural network training rather than a 

trial-and-error approach. Throughout this experience, it gave me the confidence and resources I needed to 

take on a machine learning project on my own from coming up with the project to writing a research 

paper. While machine learning still remains a black box in many ways, the overarching principles are well 

within my control.  

 

My research for the Regeneron Science Talent Search (STS) was done immediately after I concluded my 

research at RMP. Inspired by the implications artificial intelligence has and its potential in the medical 

field, I decided to integrate these two fields together by looking at lung cancer diagnosis, which is often 

overlooked to more prominent ones such as breast and skin cancer. Following the same mathematical 

principles as my research at RMP, I found the research process to be much more streamlined, but there 

were still obstacles I had to overcome. Different ones this time, ones that required me to think in areas of 

mathematics I haven’t thought of before when it came to optimizing algorithms.  

 

All in all, the integration of mathematics with science bears an immeasurable value in modeling our 

physical world. My advice for those interested in these two disciplines is to go for it. Don’t be afraid 

when you’re challenged with math that may appear difficult at first. There are countless opportunities out 

there synthesizing the two fields together, meaning you can focus on a specific part of math or science 

you are interested in, whether that’s modeling with differential equations or group theory. Regardless of 

what it is, you’ll find your “mathemagical” niche between numbers and the real world.   
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Abstract 

Preliminary diagnosis of lung cancer has led to countless cases of overtreatment due to false positive 

classifications made by physicians and radiologists. Most commonly, the misclassification of a benign 

pulmonary nodule (PN) as malignant from chest X-ray images initiates this process for patients. In the 

advent of promising machine learning and computer vision models, we investigate the optimization of 

benign and malignant PN classification using deep convolutional neural networks through transfer learning 

by fine tuning its convolutional layers. Specifically, we look at how fine-tuning the VGG19 convolutional 

neural network model differently affects its classification accuracy. With our optimal model, we test its 

efficacy in localizing and classifying PNs on chest radiographs using a selection search-based scanning 

method. We found that fine-tuning the last convolutional block yields the highest predictive performance. 

Using a reserved image test set, our model is able to yield a classification accuracy of 77% compared to 

published models yielding 68%. This methodology can be easily generalized and applied to other medical 

imaging tasks. 
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Introduction 
 
Lung cancer is the leading cause of death and the second most common type of cancer in both men and 

women [1]. As people become older, the chances of developing lung cancer increases significantly [2]; 

however, it can be treated if it is caught early, which is typically through a computerized tomography (CT) 

scan or preliminary chest X-ray imaging. While X-rays are not as effective as CT scans for early detection, 

it is the most common technique used for patients, especially those at a low risk for lung cancer. X-rays are 

preferred by patients for its lower radiation exposure and convenience. Additional imaging and tests are 

usually conducted if abnormalities are found in the preliminary chest X-ray image, making this the first 

step in lung cancer diagnosis. 

 

From a chest X-ray image, radiologists can determine the presence of pulmonary nodules (PN), which are 

small focal radiographic opacities [3]. Radiologists need to classify the PNs as either malignant or benign. 

Because these distinctions are often very subtle [4], radiologists tend to misclassify benign PNs as 

malignant. However, even before misclassifying a benign PN, it is likely that a radiologist would 

misidentify false positives from X-ray noise or other artifacts such as malformations and hemangiomas as 

malignant PNs. To mitigate inaccurate classifications, computer aided detection (CAD) techniques have 

been developed using traditional image processing techniques such as considering the contrast of the PN 

with the ribcage [5]. However, since these models are static, they can only recognize malignant PNs based 

on algorithms manually coded, resulting in a 68% accuracy [6]. These misclassifications almost always 

lead to further testing, making lung cancer one of the most overdiagnosed and overtreated diseases [7]. 

 

As current methods are ineffective, we examine this problem using a computer vision data- driven approach 

in the advent of machine learning. Literature review suggests there are features in chest X-rays that allow 

for benign and malignant PN classification [8]. For example, calcification, which can be detected as a lesion 

with distinct patterning, is correlated with benign PNs. Image preprocessing is also an important step toward 
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PN classification, including lung field classification, rib segmentation, and rib suppression [9]. This process 

is able to reduce the noise caused by the superimposed nature of X-ray images.   

 

A more recent investigation in PN classification uses ResNet to improve the detection of PN [10], but there 

is no significant classification improvement to differentiate between malignant and benign PNs, yielding 

only 68% accuracy. This research was limited in that only the final network layer of the convolutional 

neural network (CNN) was retrained. In our research, we look at improving current CAD systems by fine-

tuning existing CNN models at different layers for improving benign and malignant PN classification 

accuracy. CNNs are fine-tuned by retraining the weights of specific layers and using other layers as feature 

extractors which is known as transfer learning. Without transfer learning, a very large image dataset would 

be needed to train an accurate neural network model. In the next section, we address the methodology of 

our approach in more detail. 

 

Methods 

Dataset and Image Preprocessing 

We used the chest X-ray dataset provided by the Japanese Society of Radiological Technology (JSRT) 

association, which contains 93 non-PN images, 54 benign PN images, and 100 malignant PN images [11]. 

PNs are found in varying locations on the chest, ranging in size from 30 to 170 pixels in diameter. Each PN 

on a radiograph is labeled as either benign or malignant, as well as its size and location in (x,y) image 

coordinates. Each PN classification has been validated through CT scans and chemical tests. A sample of 

benign and malignant PN images is shown in Figure 1. As seen, PNs are often superimposed by the rib 

cage, making detection and classification difficult.  
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FIGURE 1: Chest radiographs of patients with malignant (left) and benign (right) PNs in different regions of chest. 
Nodes are boxed on the zoomed-in images. 
 

We used data augmentation techniques to artificially increase its size to 900 total images, with 300 per 

class. The dataset was then split into respective training, validation, and test sets. The training set is fed into 

the CNN for transfer learning, the validation set is used to prevent the model from overfitting, and the test 

set is used to confirm the CNN’s predictive power by running it on images that is has not seen before. 

 

Training 

Using Tensorflow, we built the VGG19 CNN. We chose to use the VGG19 CNN for its deep network of 

layers, which allows for a high-performing hierarchical representation of visual data [12]. VGG19 consists 

of 19 layers: five convolutional blocks are present, with each block consisting of two or four 3 x 3 

convolutional layers, followed by a maxpool layer. Maxpooling downsamples an input representation by 

applying an argmax filter on non-overlapping regions of the original representation. By doing this, max-

pooling prevents overfitting by providing an abstracted level of representation. The convolutional blocks 

are connected by 3 fully-connected (FC) layers, followed by a softmax classifier. FC layers connect every 

node in the CNN and look at the outputs of previous convolutional layers to determine which features 

correlate most to a class. The final softmax layer is trained by interpreting the outputs of the FC layers as 

unnormalized log probabilities of the classes and minimizing the cross-entropy loss between them, which 

is modeled in Equation 1, where for each image i, fj is the j-th element of the vector of class scores f and yi 

is the correct image label [13]. 
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To prevent overfitting, L2 regularization is used for the softmax classifier. L2 regularization allows for the 

cross-entropy loss to favor small weights in the training data. The L2 regularization parameter is added onto 

the cross-entropy, as shown in Equation 2 where 𝜆 is the regularization strength constant, and j represents 

the j-th component of the weights vector w [13].  

 

The trained network weights used in this research are from the ImageNet ILSVRC-2014 challenge, which 

was able to classify a dataset of more than 14 million images into 1000 classes with a 7.0% test error, 

outperforming other state-of-the-art networks, such as GoogLeNet [12]. In our investigation, we looked at 

how choosing different layers to fine-tune would affect the model’s accuracy. Specifically, we looked at 

four different cases: removing the last FC layer and retraining the softmax classifier (TF.A); retraining the 

layers in TF.A and the last convolutional block (TF.B.I); retraining the layers in A and the last two 

convolutional blocks (TF.B.II); and extracting features from earlier convolutional layers and training a 

softmax classifier on top of them (TF.C). These four cases are visualized in Table 1. 
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TABLE 1: VGG19 transfer learning configurations shown for each implementation [12]. All bolded layers except 
Softmax layers were fine-tuned using weights from trained models. Other layers were frozen. A rectified linear unit 
(ReLU) activation layer is placed after each convolutional layer, which is not shown in the table. 
 

 
Localization Algorithm 

 

FIGURE 2: Model of our selection search-based scanning method. The image array shows the values that would 
appear in a one-dimensional grayscale image. Values in the kernel frame show the output value from the trained CNN 
model, which would be the same in every element of the array, which are added to the current values on their respective 
probability maps. 
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After determining which model fine-tuning method yields the highest classification accuracy, we classify 

and localize PNs on chest X-ray images in the test set. Instead of using the conventional region-based CNN 

(RCNN) method localization due to its large time and computational expenses for training, we introduce a 

selection search-based scanning method using a 224 x 224 kernel and convolving it on a chest X-ray image 

with a padding of 50 pixels, as shown in Figure 2. Since each pixel, except the image borders, overlap each 

other from the kernel images an equal number of times, we use two probability maps to determine the 

location of malignant and benign PNs. Two probability maps, one for benign PNs (Pb), and one for 

malignant PNs (Pm) are first initialized as zero matrices equal to the image size. Then, the kernel frame 

scans through the entire X-ray image. In each scan, it passes the kernel’s values into the trained model, 

which outputs two values: benign PN and malignant PN probabilities. These probabilities are then added 

to all elements within the image region the kernel scans on their respective probability maps. After scanning 

through the entire chest X-ray image, the regions with the highest values in Pm and Pb are identified using 

a 2D peak-finding algorithm, as higher values increase higher probability of a PN presence. Regions are 

then boxed for medical diagnosis. As the method above has a complexity of O(𝑛ଶ), we reduce this 

exhaustive search through conditional filters so that the kernel does not need to feed every frame through 

the CNN, such as edge detection.   

 

Results and Discussion 

We present the performance of each transfer learning implementation in Table 2, including the model’s 

accuracy on the reserved test set. 
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TABLE 2: Summary of transfer learning performance for each implementation listed in Methods section. 

 

 

FIGURE 3: The validation accuracy is increasing and is converging with the training accuracy. While a gap is still 
present between the training and validation accuracy, the rate of convergence suggests that the model is able to 
generalize the training data. 
 
 

 
 
FIGURE 4: Validation loss shows significant downward trend and is converging with training loss. The loss vs. epoch 
graph provides better insight about the model’s ability to generalize data than Figure 3, as the distance between the 
validation loss and training loss decreases significantly at the end of training. 
 
 

From Table 2, we find that TF. B. I yields the most optimal solution, with a 77% accuracy for the reserved 

test image dataset. This is validated by the accuracy and loss plots for TF.B.I (Figures 3, 4), which show 
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the validation values converging to the training values. This shows that the model is able to generalize the 

training data 

 

Since TF.B.II yielded the best results, we tested if the model would be able to localize PNs using the 

selection search-based localization model (Figure 2). Testing this method on all reserved chest X-ray 

images, we found that the PNs could be localized on a chest X-ray image, but only to its general proximity. 

In Figure 5, we present the results of localizing PNs on two radiographs, which shows that the model’s 

proposed regions overlaps with the true region, but also includes a large non-PN area. The areas proposed 

by the model that are outside of the true region originate from the model’s classification accuracy limitations 

and the padding size used. Smaller padding sizes would allow the proposed region to be smaller and more 

accurate but is computationally more expensive. 

 

FIGURE 5: Benign (a) and malignant (b) PN radiographs are shown. Green bounding box indicates true PN region 
and red bounding box indicates region proposed by model. Overlap is present between the true and proposed regions; 
however, area of proposed region is much larger than true region. 
 

Conclusion   

From fine-tuning different transfer learning implementations for optimizing PN classification for chest X-

ray images, we conclude that TF.B.I, or fine-tuning the last convolutional block and softmax classifier of 

the VGG19 model, yields the best performance for this task. From the accuracy and loss values outputted 

during the training process, the validation loss converges with the training loss, signifying that the trained 
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model can generalize the training data. Passing the reserved test image set into the trained model yielded a 

77% accuracy, which is significant compared to the published models only yielding 68% accuracy [6]. 

When this model was used to localize PNs using our selection search-based scanning method, PNs were 

able to be localized to a general proximity of the PN’s true region. 

 

Future Work 

Future work could involve a larger image dataset which would significantly help reduce overfitting and 

better generalization with unseen radiographs. With a larger dataset, it is also feasible to fine tune the entire 

CNN, which would allow for better adaptation to chest radiographs, since many have different high level 

features from the ImageNet dataset. The training of each CNN model can be improved by using k-fold cross 

validation technique instead of holdout method. By using the k-fold method, it overcomes the basic 

drawbacks the holdout method has, such as reserving part of the limited dataset for validation only. For 

localization, we could decrease the padding of the convolution kernel for a more accurate proposal region. 

We can also compare the performance of our fine-tuned CNN selection search-based scanning model with 

a Faster-RCNN. 
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