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Personal Section 

A few years ago, my best friend returned from her vacation to the island of Cozumel off the 

coast of Mexico with a GoPro full of images she had taken while paragliding, hiking, and 

relaxing on the beach. Most interesting to me, however, were the photos she had taken while 

scuba diving in the coral reefs that surround the island. As we scrolled through dozens of 

pictures of corals, I realized that my friend, like millions of other tourists, had in her possession a 

treasure trove of information about the health of the coral reefs of Cozumel at the time she 

visited. However, the issue was how to collect and analyze all that information efficiently.  

I first became interested in coral reefs in my childhood. My father and I spent the evenings 

watching nature programs on channels such as National Geographic; I remember watching hours 

of footage of lions hunting zebras, penguins swimming in the waters of the Antarctic, and 

hundreds of species making their homes in the reefs of the world. I was awed by the natural 

world and I continue to be, but as we are all familiar, the incredible ecosystems we have the joy 

of seeing captured on our screens are being devastated by the effects of climate change. Coral 

reefs, specifically, face the increasingly severe threat of bleaching: warming ocean waters stress 

corals and cause them to expel the microscopic algae that live within them and that provide them 

food. Nearly half of coral reefs have been severely damaged by bleaching and other climate 

change-related diseases. It is vital that we rally to preserve them for the future of our oceans. 

 



My childhood fascination with reefs, my friend’s scuba diving adventures, and the grim news 

articles I scrolled through about how yet another section of the Great Barrier Reef had been 

destroyed inspired me to undertake research on how to contribute to reef recovery efforts. I had 

long felt a sense of hopelessness about the destruction of the environment; this project provided 

me with an opportunity to be an active participant in ecological efforts that I had watched from 

the sidelines. It also gave me the chance to explore a technology that had fascinated me for years: 

machine learning (ML). 

ML is a field of computer science concerning the study of algorithms that learn from exposure to 

previous data in order to improve at autonomously completing a task. Chances are you’ve 

already interacted with ML algorithms in your everyday life: they drive the show 

recommendations that Netflix gives you, virtual assistants like Siri and Alexa, and facial 

recognition software. I developed my interest in this field as I was thinking about my future in 

college and beyond; in fact, this project was a principal factor behind my decision to study 

computer science in college. I decided to dive head first into exploring ML by applying it 

environmental monitoring. With the guidance of my mentor Mr. Anthony Pellicano, the ML 

specialist at Angion Biomedica Corp. in New York, I used a convolutional neural network to 

analyze underwater images of coral reefs in order to detect the presence of healthy and bleached 

corals within these images. In order to do so, I took online courses on ML to better acquaint 

myself with the mathematics behind the technology I was harnessing. Although the calculus and 

statistics discussed were above my level, the mere mention of them piqued my interest. I can’t 

wait to get to the point in my academic journey when I am able to fully understand and 

appreciate the mathematics behind ML.  



As far as advice to aspiring high school researchers goes, I urge everyone to explore their 

curiosities fully. I have seen incredible projects built from a single, seemingly insignificant 

question; the idea for my own came from spending time with my friend. Research also doesn’t 

require access to a state-of-the-art lab; there are endless contributions you can make to science 

and mathematics in your backyard, on your laptop, or with a pencil and a piece of paper.  

 

Research 

INTRODUCTION 

Coral reefs are among the most biodiverse marine ecosystems, housing millions of organisms 

across thousands of species within just 1% of the ocean floor [1]. In fact, the largest living 

structure is a coral reef itself, the Great Barrier Reef [2]. In addition to providing living habitats, 

coral reefs protect coastal areas from tidal waves and erosion. Healthy reefs absorb 97% of a 

wave’s energy, buffering shorelines from currents, waves, and storms, thereby mitigating loss of 

life and property damage [1]. In addition to providing tremendous ecological benefits, coral reefs 

support the millions of people that rely on them for food and to draw tourists (over 70 million 

trips made annually), making these fragile and beautiful organisms a powerful engine of coastal 

and marine tourism [3]. In one estimate, the net annual benefit of the world's coral reefs is 

approximately $30 billion in the forms of tourism, recreation, coastal protection, fisheries, and 

biodiversity [4]. 

Despite their importance, corals and coral reefs are in crisis. Environmental changes including 

oceanic warming and acidification could result in issues such as bleaching. This phenomenon is 

associated with the expulsion of in-dwelling algae by coral polyps, causing them to lose more 



than just their bright coloration [5]. Coral polyps have symbiotic relationships with these algae, 

which provide a majority of the coral’s energy and are vital for the survival of the individual 

coral and the reef as a whole. While bleached corals might still survive, starvation eventually sets 

in [5]. The leading cause of coral bleaching is increasing water temperatures, with mass 

bleaching events occurring across hundreds of miles or more of ocean [6-9]. In 2016, heat stress 

encompassed more than half the coral reefs globally and other mass bleaching events have 

eliminated swathes of healthy coral in the Great Barrier Reef, the western Indian Ocean, and the 

Seychelles [6-8].   

 

Figure 1. A healthy reef, characterized by dense and diverse coral cover, in the top image is 

compared with a reef that has undergone a bleaching event, shown in the bottom image. Image 

Credit: [12]. 



In addition to warming waters, the impact from land-based sources of pollution—including 

coastal development, deforestation, agricultural runoff, and oil and chemical spills—can impede 

coral growth and reproduction, disrupt overall ecological function, and cause disease and 

mortality in sensitive species [6-9]. Under the United States Endangered Species Act, 22 coral 

species are currently listed as threatened, and 3 are listed as endangered [10]. With more than 

40% of the world’s live coral cover lost in the last three decades, the number of people adversely 

impacted - 500 million - is 35% more than the entire population of the United States [11].   

In order to address these problems, global efforts including the XL Catlin Seaview Survey, the 

Allen Coral Atlas, and CORALNET are using underwater and satellite-based images of the coral 

benthic cover, i.e. top view of the coral canopy, to both create a coral map and assess coral health 

in terms of the percentage of live coral [12-14]. These analyses are useful to track the health of a 

reef over time; for example, seeing a decrease in live coral cover while noticing an increase in 

algal cover could indicate that corals are losing the battle for space, sunlight, and oxygen to algae 

[15]. Traditionally, these analyses have been done by human annotators, but this is both an 

expensive and laborious process. As described in “Automated annotation of coral reef survey 

images”, of the millions of images of reefs taken each year, only 1% is annotated by humans, 

which leaves a wealth of information untapped [16]. To bridge this gap, machine learning (ML) 

approaches have recently been unveiled that analyze benthic cover – including types of corals in 

a reef, other reef invertebrates, and sand – and achieve the same levels of accuracy as traditional 

methods but more efficiently [12-14]. 

Provided empirical data, ML makes new predictions or recognizes new patterns. The field is very 

broad and includes many types of algorithms with various advantages and disadvantages for a 

given task, such as the support vector machine (SVM) used as the architecture for CORALNET 



or convolutional neural networks (CNNs), a type of deep learning architecture most often used in 

image classification which generates functions that map the features in an input image to a 

classification output [16, 17]. ML has been making headway in medicine, where it has already 

been successfully utilized in order to diagnose skin cancers, diabetic retinopathy, lymph node 

metastasis, pneumonia, emphysema, and many more pathologies [18]. Indeed, most diagnoses 

can trigger intervention and this is my goal for use of ML in environmental, and more 

specifically coral reef, monitoring. However, assessment of the benthic cover alone is 

insufficient to fully diagnose the extent of reef disease, as it only provides information about the 

quantity of coral but not the health condition of that coral. Satellite imagery from above water 

might show healthy coral tentacle tops whereas bleaching might be from bottom-up. 

Furthermore, satellite imagery lacks the clarity and depth of detail needed to diagnose the small 

lesions in corals which may only be partially bleached.  

While there is tremendous cause for concern, there is much more need for action. Historical 

evidence indicates that reefs are able to recover, even from mass bleaching or predation events 

[19]. However, their ability to recover is dependent on factors such as herbivory, algal cover, and 

coral recruitment [19]. There are already initiatives in place, such as the Mars Symbioscience 

which places complex structures in open spaces in depleted reefs to serve as recruitment 

locations for new corals, that have successfully begun rebuilding our marine ecosystems [20]. 

My overarching hypothesis is that coupling ML with crowd-sourced images can be used to 

analyze existing and new databases to identify coral disease. Hundreds of thousands of 

photographs routinely obtained  by professional and amateur scuba divers, tourists, and other 

deep-sea forays represent a warehouse of untapped information that can be used to preserve coral 

health across the globe. This approach, which encourages citizen science and empowers 



stakeholders like you and I, couples ML with crowd-sourced images to complement existing 

efforts to identify the extent of worldwide coral bleaching. Analyzing images uploaded by users 

across the globe for evidence of bleaching by traditional methods would be a Herculean task. By 

contrast, ML could be deployed to detect and identify bleaching in corals by first training the 

machines on an annotated set of images. As described below, a CNN  has now been trained on 

images of corals with varying degrees of health in order to create a model that can identify 

disease. 

The overarching deliverable is an ML-based platform that will be used to analyze incoming 

crowd-sourced images of corals along with the location of these corals. Heightened public 

awareness can translate to increased data and intensified conservation efforts. The data collected 

could be integrated into the National Oceanographic and Atmospheric Administration’s 

(NOAA’s) Deep Sea Coral Data Portal (DSCDP), which houses images of and information about 

coral found around the world [21]. This technology can also be used in citizen science projects 

such as the Great Reef Census, which asks volunteers to upload 10 photos of their diving site 

[22]. This coral health database can be rapidly used to identify trends in the health of different 

reefs and anticipate outbreaks. Based on these trends, resources for treatment of bleaching can be 

allocated, protection zones can be set up, and local awareness can be raised to lower risk 

factors.   

METHODS 

I selected an ML algorithm after a literature review which indicated that a CNN has a high 

Mathew’s Correlation Coefficient (MCC), a performance parameter that assesses classifier 

algorithms, compared to other algorithms when applied to coral images [17, 23]. The MCC is 



calculated on a scale between -1 and 1, with algorithms that score near -1 making predictions 

that oppose the true values, algorithms that score closer to a 0 making their decisions near 

randomly, and algorithms that score closer to 1 being in near agreement with the true values of 

what they are classifying. I chose to use the Mask Region (R) CNN algorithm, an open source 

CNN, specifically because of its successful use in the analysis of nuclei in microscope images, 

detection of sports fields in satellite images, and other object detection and segmentation projects 

[24]. An R-CNN was preferable to a CNN because it not only can classify objects in an image, 

but detect where they are located in the image and output a “mask” over the region of interest, 

thus providing more detailed analysis of the image [24]. I then modified the Mask R-CNN to 

best suit the qualities of my dataset by adding and changing the names of the classes (the health 

conditions of the coral) as well as making the algorithm compatible with my data annotation 

platform of choice, Labelbox [25]. 

I obtained a total of 178 images of individual corals and coral reefs with the aforementioned 

health conditions (healthy and bleached), which corresponded to a total of 1530 individual 

instances of these health conditions, in order to train and test the algorithm (Table 1). I then 

annotated these images in Labelbox using the segmentation polygon tool to outline masks of the 

shape of the corals as well as disease lesions (Figure 2). I ensured the accuracy of the annotation 

of these images by collecting them from reliable research sources such as the XL Catlin Seaview 

Survey and published ecological papers, among others [12, 13]. These masks from the 

annotations are what the algorithm learned from and emulated. 

 

 



 
Healthy Bleached Total 

Training 553 830 1383 

Validation 91 56 147 

Table 1. Distribution of individual instances of coral health conditions across training and 

validation data sets. 

 

Figure 2. Example of image data annotated (right) in Labelbox and used for model-training. 

Healthy corals were outlined in green and bleached corals were annotated in purple using the 

polygonal selection tool. The annotations are stored in the JSON file for the model to learn from. 

Image Credit: [12], Researcher. 

I split the dataset into two groups, one for training and one for validation. The setup for both 

groups was identical in terms of classes and annotation type, but the data were split between the 

two, approximately 80-20 training to validation, which the Pareto Principle indicates is an ideal 

split for midsize data sets [26]. Training data is the data that the model learns from, and 

validation data is the data that it tests itself on between rounds of training. The corals in the 

images could be classified as healthy or bleached, and the background of the image (along with 

any other organisms present) was left unannotated and was treated as a third class. The platform 

generated a JavaScript Object Notation (JSON) format that contains image paths and the 

annotations for each image. JSONs are readable by humans and computers alike, making them a 



viable method for providing data to a model [27]. This JSON was used by the Mask R-CNN 

algorithm to train on and validate itself using the images. 

 I started an Amazon Web Services (AWS) EC2 instance in which I developed the model using 

the images from the dataset, the JSON files containing the image annotations, and the modified 

algorithm code. The instance was equipped with Tensorflow graphical processing unit (GPU) 

capabilities, which increases computing power and quickens the training process [28]. Over time, 

the algorithm generated logs as it trained that allow it to build on what was previously learned 

with each training session rather than relearning each session, the basis of the neural network. In 

order to overcome the small size of my datasets (178 images and 1530 total instances of healthy 

and bleached corals), I implemented image augmentation. This is a technique used to artificially 

inflate the size of the dataset by performing transformations — such as flipping or rotation —of 

annotated images such that these images act as new images for the model to learn from. Image 

augmentation prevents overfitting, a phenomenon in which a machine learning model trains for 

too long on too few images and as a result is unable to extrapolate the trends from the training 

images to completely unfamiliar images. Without using image augmentation, it would be 

possible for my model to overfit and only recognize bleached and healthy corals in the 178 

images it was trained and validated on and not be able to perform well on images it has not seen 

before. 

I monitored the progress of the algorithm using Tensorboard, a feature of Tensorflow, which 

generates loss graphs and accuracy graphs for different aspects of the model’s performance 

including its class accuracy (how well the model is able to identify healthy corals as healthy and 

bleached corals as bleached) and segmentation box accuracy (how well the model can outline the 

corals of each health condition). Loss graphs ideally approach but never reach zero and the 



accuracy graphs ideally approach but never reach one. Training was halted after the training and 

validation losses converged, or approached the same value. The convergence of training and 

validation losses demonstrates that the model has not been overfitted and that it is able to 

perform well on the validation images, as well as the training images which it learned from. If 

validation loss were significantly higher than training loss, this would indicate that the model 

was overfitted. 

I repeated this process for two more versions of the algorithm, in a procedure known as 

hyperparameter tuning. Hyperparameters are specific settings assigned to the model that help 

control the way it learns and by adjusting the hyperparameters, a researcher can influence their 

algorithm to train more efficiently and achieve better results regarding loss and accuracy. Table 2  

displays selected hyperparameters for each of the three versions of the algorithm I trained. 

 

 Version A Version B Version C 

Steps per Epoch 1000 1000 1000 

Validation Steps 50 50 50 

Learning Rate 0.001 0.01 0.001 

Weight Decay 0.0001 0.001 0.001 

Learning Momentum 0.9 0.9 0.5 

 



Table 2. Selected hyperparameters from training. Hyperparameters are values used by a 

researcher to control the training process and can be tuned during training to achieve the best 

results. 

 After hyperparameter tuning was completed, I chose the version of the algorithm that performed 

best on the validation datasets (see Results) and tested that model on a set of thirty images of 

healthy and bleached corals. Tests sets are used in addition to validation sets as another measure 

against overfitting; by choosing the model that performed best on the validation set, the 

researcher is inserting bias into the model by optimizing it to the validation set. The model is not 

optimized to the test set, so assessing its performance on these images provides a better 

understanding of its true abilities when applied to new images. The size of the test set is thirty 

images because thirty images is approximately 20% of the size of the training set, and this is a 

standard convention in the ML field. In order to choose an operating point (the confidence level 

at which a model will choose to display its prediction of the health condition of the coral rather 

than discard it as a poor guess), I constructed a precision-recall curve. These curves are 

constructed by choosing operating points at intervals for values between 0 and 1 (I chose 

intervals of 0.1) and recording the amount of true positives, true negatives, false positives, and 

false negatives generated by the model at that operating point. They are used to determine the 

balance between the amount of false positives generated and the amount of true positives 

generated when the model is given a certain confidence threshold and trained on a dataset which 

may not be balanced in terms of class representation. Depending on the application of the model, 

the developer may choose to prioritize decreasing the amount of false positives or may prioritize 

increasing the number of true positives. From this curve, I chose the operating point which led to 

the optimal balance between precision (the number of true positives out of total positives) and 

recall (the number of true positives out of the sum of true positives and false negatives). This 

curve is discussed in the Results section.  



RESULTS  

The models were trained on the dataset of 1530 instances for 283 epochs with heavy image 

augmentation to prevent overfitting. Each epoch represents one cycle of training and one pass 

over a subset of the training dataset. All training and validation losses were minimized to near 

zero – segmentation loss approached 0.136, binding-box loss approached 0.013, and class loss 

approached .003 for the model which was determined to have the most optimal hyperparameters 

(Figure 3). Binding box and segmentation loss are measures of the model’s performance in 

identifying the coral in the image and being able to outline them. Class loss is a measure of the 

model’s ability to predict whether a particular coral is healthy or bleached.   

 

Figure 3. Loss is defined as the difference between the results of the ground-truth annotation 

training data and the model’s prediction attempt. Pictured here: segmentation loss (A), binding-

box loss (B), and class loss (C). Segmentation and binding-box identifies individual coral 

features while class loss predicts which class those features belong to: healthy or bleached coral. 

Image Credit: Researcher. 



Based on the validation losses, the model whose hyperparameters are outlined in Table 2 under 

Version A was selected as the most optimal model, because its overall validation loss was the 

lowest of the three versions of the model that were trained. This optimal model was tested on 30 

test images of healthy and bleached corals. A sample image from the test set and an analysis 

done of it by the model are shown in Figure 4. The model was run on the test set at operating 

points spaced at intervals of 0.1 between 0.0 and 1.0 in order to determine the optimal operating 

point. This operating point was determined to be 0.8 because it balanced the rate of true positives 

(represented by recall) and false positives (represented by precision) most appropriately for the 

application to detecting bleaching in coral reefs. Detecting true instances of bleaching is more 

critical to protecting reef health than minimizing false positives, therefore the operating point of 

0.8, which resulted in a recall of 0.9 and a precision of 0.7, was appropriate. At this operating 

point, the model achieved 85% accuracy in distinguishing between healthy and bleached corals 

in the test set. Precision, recall, and accuracy combined provide a more complete picture of the 

model’s performance; the operating point is also flexible and can be changed for implementation 

of the model.  



  

 Figure 4. Model detection of healthy coral. An image of healthy coral (A) is analyzed with the 

model which makes predictions (B) breaking the image down into segmented regions that the 

computer recognizes as healthy coral (visualized in C). Image Credit: Researcher. 

 

 



DISCUSSION 

This research represents an advancement in the application of ML to environmental monitoring, 

specifically in the area of coral reef monitoring. The standard thus far has been benthic cover 

analysis, aided by algorithms such as SVM [16]. While these analyses are an appropriate first 

step in measuring reef health, they do not provide information beyond the percent of live coral 

coral. In order to make informed decisions to protect coral, researchers and policymakers need 

in-depth knowledge of the state of reefs. My algorithm provides this type of information because 

it is an instance segmentation algorithm; not only does the algorithm detect the presence of 

bleached or healthy corals in an image, it can also identify how many corals of these types are 

present and where they are located in the image frame. 

The main limitation of this project was the small dataset. Only high-resolution, captioned, 

publicly-available images were used in the training and validation datasets. This limited the 

amount of data available for the model to learn from; the time required to annotate the datasets 

(see Methods) further limited the amount of data because labeling the regions of interest is a 

time-consuming process. These issues may have resulted in overfitting, despite the image 

augmentation methods used to combat overfitting. The model could be improved by increasing 

the size of the dataset and ensuring diversity in the types of coral represented in the images.  

An ML approach does have weaknesses in that some false discovery rate is inherent with ML 

methods. However, this feature can be minimized through more training on additional data [29]. 

Secondly, images taken at greater depths might not have the same resolution and quality as 

images obtained at shallower depths, resulting in false positive findings. This issue could be 

tackled through the use of algorithms such as the sea-thru algorithm that reconstructs color in 



underwater images in the preprocessing of input images [30]. Nevertheless, this approach is an 

important and stakeholder-empowering first step to address a global crisis because diagnosis can 

trigger intervention. 

CONCLUSION 

The research presented herein couples crowd-sourced data with ML to provide a deliverable that 

complements existing strategies to diagnose the extent of coral bleaching. It has the potential to 

spur citizen science and empower stakeholders as active participants and trigger corrective 

measures to halt or slow coral bleaching. 

Almost on a seasonal basis, we are experiencing irreversible ecological tipping points. Human 

footprints, including pollution and global warming, are starting to leave permanent marks on our 

ecosystem, including the calcium carbonate skeletons of bleached and starved corals. Eventually, 

these coral skeletons will erode, causing the reef structure to collapse. The mass bleaching events 

in recent years have been triggered by global warming and, if current trends continue, corals are 

expected to become increasingly rare on reef systems.     

Bleaching is reversible if the stressors are removed quickly [31]. There is a global ongoing effort 

to harness satellite imagery to map benthic cover as a measure of reef health [12-14]. However, 

additional resources must be taken advantage of. Fortunately, there is a large crowd-sourced 

databank in the form of videos and photographs of corals and coral reefs across the globe. These 

close-range photographs hold valuable information on the health of the corals. The research 

described herein utilizes a ML-based approach to diagnose coral bleaching based on these 

photographs. ML has precedent in diagnosis: the technology has revolutionized medicine, now 



routinely outperforming and outpacing human experts in making diagnoses at a fraction of the 

cost and saving lives across the world [17]. 

The ML algorithm is currently able to identify healthy and bleached corals at an 85% accuracy. 

ML approaches come with notable benefits including: efficiency allowing for larger sample 

analyses, the presence of a “trained expert” wherever there is a computer rather than relying on 

thinly spread marine biologists, the detection of patterns and correlations which would require a 

mass workforce working in unison for large amounts of time to replicate, and learning based on 

expert evaluations. 

This algorithm will be made available to NOAA and private companies such as National 

Geographic so that it can be used freely. It can also be incorporated into an application for use by 

the general public in order to encourage more tourists to obtain photographs of corals, run them 

through the algorithm, and upload the results to coral health databases such as NOAA’s DSCDP 

[21]. With the successful implementation of widespread reef monitoring and analysis will come 

the ability to efficiently respond to bleaching events. Although there is no method of treating 

bleached corals, these vulnerable corals can be protected from further harm and given the 

opportunity to recover by halting trawling, industrial runoff, and mining in the area after 

bleaching events [19]. 
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