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Personal Section 

When serializing Earth’s evolution with a clock, we can image that everything developed, 

evolved, and advanced within 23 hours and 59 seconds, and human existence comparatively 

makes up that last second. When I first learned this fact, I immediately thought about how in the 

grand scheme of things, human have had an extremely short time to impact our world. This does 

not however, mean that the impact has been small by any means. Human activity such as 

pollution, overpopulation and overconsumption of natural resources, and industrialization, can be 

directly linked to habitat destruction, deforestation, overall environmental degradation, and 

climate change.  

Regarding utilizing resources, human activity exhibits two extremes of a spectrum 

(overconsumption and scarcity), demonstrated by how we consume the most basic substance: 

water. Generally, we perceive water as an infinite resource, one that can be used almost 

indiscriminately. The truth is far from that, since only 1% of all available water on Earth is 

actually usable for human activity. Even with this limited amount, due to our current 

technological, agricultural, and economic systems, many disparities in access to freshwater for 

drinking and daily activities exist, further exacerbating water scarcity, or the lack of sufficient 

freshwater resources to meet the demand in a region. In many instances, water scarcity is caused 

or propagated by developed and heavily industrialized nations participating in excessive 

consumption, inhibiting other nations from accessing basic necessities. 



Currently, two-thirds of the global population experiences water scarcity. One-fifth of the 

world population currently lives in conditions of physical water scarcity, where there is not 

enough water to meet their demands, and one-quarter of the world’s population experiences 

economic water scarcity, where their region has enough water to meet the necessary personal, 

agricultural, environmental, and industrial needs, but lack sustainable accessibility. Existing 

literature determined that water scarcity occurred more often in areas where irrigation systems 

had low water productivity (WP) and water use efficiency (WUE), primarily caused by a lack of 

sufficient irrigation scheduling technology. To fully address the issue, aiding water scarcity in 

many regions requires proper technological innovation to manage available resources rather than 

drawing from new ones.  

Thus, my goal became to find solutions that were effective, cost efficient, and had a 

feasible implementation. I rationalized that if there was a way to know the exact volumetric soil 

moisture content in the ground at any given time, now or in the future, a decision support system 

could be utilized to ensure that the proper amount of irrigation was delivered to any crop, 

precipitating the need for a soil moisture prediction model. 

Approaching this problem resulted in a crossroads of several disciplines, including 

environmental science, mathematics, and computer science. To create this prediction model, I 

utilized deep learning, namely a recurrent neural network known as an LSTM. I had some 

primary experience with machine learning and some more basic algorithms, but undertaking this 

project was my biggest challenge yet. Through online courses, blogs, journals, and discussion 

forums, I learned the necessary algorithmic components, both theoretical and implemented. At 

the same time as conducting this project and learning new mathematical, computational, and 

statistical principles, I was also studying AP Calculus BC and AP Statistics at school. 



Conducting research made me realized how I was able to apply knowledge I previously learned, 

but more importantly, I realized how much I didn’t know. It was incredibly intimidating (and 

sometimes frustrating) to be exposed to so many new ideas and topics at once, but with passion 

and interest, I was excited at the prospect of applying both new and old interdisciplinary 

knowledge in the real world.  

As for giving some advice, one thing to remember is that there is no easy journey from 

point A to point B, and research is not a linear path. Each day, there will be something new, and 

a large aspect of research is embracing both the good and bad parts. Learning from past mistakes, 

celebrating small victories or steps in the right direction, and most importantly, knowing when to 

take a step back or try a different approach are some lessons every researcher continuously 

experiences and learns from for themself. While this non-linearity may fuel ambiguity and 

hopelessness at times, it is also incredibly rewarding to see all your work come together at the 

end. I fell in love with research because I viewed it as a way to answer my questions and mitigate 

uncertainties. I would say I now have many more questions than I began with, but each day, I 

look forward to exploring new ideas and learning something I didn’t know before. 

Many students think that every research project needs to be some Nobel Prize level worth 

endeavor, but everyone must start somewhere. When conducting research, no matter the topic or 

complexity, every experience is something to learn from. As my school research teacher used to 

remind us, when starting out, it is important to remember that every master was once a beginner. 

The best way to start is to explore. My advice to any beginning researcher would be to stay 

curious, develop your knowledge base, pursue your passions, and don’t be afraid about the result. 

There is no way to guarantee a finding, but by trying, no matter what ends up happening, you 

end up learning something, and that my friends, is the best feeling in the world. 



Research Section 

1. Introduction 

1.1. Environmental Impacts of Irrigation 

Productive irrigation systems are imperative to stimulate economic growth, provide an 

adequate world food supply by combating food insecurity, and mitigate current problems of 

water scarcity. However, due to a disparity in technological irrigation advances, many countries 

and agricultural lands fail to use these practices as adequate means of sustenance. Irrigation is 

currently the largest water user and waster, utilizing 70-95% of all available water, depending on 

the region (Mitra et al. 2017; Karmi 2019). Current management and development of irrigation 

technologies are insufficient, leading to overuse of water for crop production and having a low 

water use efficiency (WUE), one of the main causes of water scarcity (Mitra et al. 2017). Despite 

many preconceived notions, fresh water is not an abundant resource on Earth. Currently, 97% of 

all available water on Earth lies in oceans and seas, 2% lies frozen in glaciers, and only 1% is 

actually usable for human activity (Stockle, 2001). According to the World Economic Forum, 

water scarcity is currently projected to be one of the most prominent problems in the future 

(“Water Scarcity,” 2019).  

The lack of available freshwater furthers the need for proper irrigation management 

practices and may potentially reduce the world food supply. Currently, 850 million people suffer 

from food insecurity, and 1.6 billion tons of food is lost or wasted each year, worth an estimated 

$1.2 trillion (Karmi, 2019).  Problems in harvesting a proper yield are not due to a lack of land 

available to cultivate, but rather how existing agricultural plots are managed. Thus, most experts 

believe improving the water use efficiency (WUE) of current agricultural systems is more 



effective than abandoning existing farmland and beginning new irrigation projects (Stockle, 

2001). 

Additionally, climate change is projected to increase variability in rainfall, with more dry 

spells, droughts, and floods, further reducing rainfall and increasing the threat of a lack of fresh 

water (Rockstrom et al., 2007). However, there is a large disparity in which countries can have 

easy access to fresh water, and many nations must rely on already dwindling bodies of water 

such as rivers to harvest freshwater, which can be unreliable and unsustainable (Speck 2020).  

1.2. Irrigation Systems Inefficiencies  

Traditional methods of irrigation have caused poor management practices, leading to 

salinization, waterlogging, runoff, chemical water pollution, and public health crisis (Stockle, 

2001). Polluted water is a major cause of human disease, and according to the World Health 

Organization (WHO), more than 4 million children die every year because of water-borne 

infection. Developments in agricultural technology have shifted from traditional inefficient 

methods to practices of micro and precision irrigation. Precision irrigation has been shown to 

improve water use efficiency, reduce energy consumption, and enhance crop productivity by 

leveraging advances in sensor, control, and modeling technologies (Adeyemi, 2018b). Changing 

irrigation systems can lead to many effects on an irrigated farm. More efficient irrigation systems 

make water more productive, yielding more agricultural products than before. However, this 

could shift agricultural goals to maximizing crop yield, but with the current systems, this will 

also increase water use. Attempting to weigh technological advancement and economic growth is 

a delicate balance, as developing efficient irrigation systems can reduce the water required to 

obtain the same products and maintain the current food supply, but there are also higher water 

application costs associated with upgrading irrigation technologies (Gomez, 2015). Thus, a cost-



benefit analysis needs to be undertaken to demonstrate whether upgrading the current irrigation 

method is necessary.  

However, there are other ways of improving WUE and water productivity (WP), that do 

not involve fully changing a current irrigation system, such as improving irrigation scheduling 

practices. Irrigation scheduling is a method that determines when and how much water needs to 

be applied to meet a specific goal (generally to prevent yield-limiting crop water stress) and is 

essential for sustainable water management and to have profitability optimization in an irrigated 

farm (Aguilar et al., 2015). Improving irrigation schedules require prediction models that take 

many factors into consideration, including the type of crop, stage of development, soil properties, 

soil-water relationships, availability of water supply, and weather conditions (Aguilar et al., 

2015). Soil moisture is one of the largest factors when determining how much water an irrigated 

field needs (Allen, 2020). The most accurate measurement of soil moisture is volumetric water 

content (volume of liquid water per volume of soil). This metric is then compared with soil water 

content at field capacity to calculate soil moisture depletion (Sharma and Nelson, 2019). 

1.3. Machine Learning Prediction Models and Validation 

In creating soil moisture prediction models, various methods have been applied. A 

Decision Support System (DSS) model uses automated methods to analyze a large amount of 

unstructured data and accumulate values to aid in decision-making (Corporate Finance Institute, 

2020). Existing DSS models can quantify simulated growth values, development, and yield while 

also providing information about aspects not directly related to crop water needs. However, they 

usually require a high number of inputs and parameters, and their complexity generally hinders 

their functionality when applied in the real world, limiting the scope for their implementation 

(Ramírez-Cuesta et al., 2019). When used for agricultural purposes, DSSs often increase the 



frequency of irrigation in their schedule but decrease the water used at each interval, lowering 

overall water use while also relieving crop water stress in a timely manner (Chen et al., 2019).  

Prediction models utilize machine learning for creating an automated decision-making 

system. Machine learning is a data analysis technique that trains computational ‘machines’ to 

make predictions on new data. In recent years, there have been several studies exploring the 

intersections between machine learning and irrigation scheduling, particularly in predictive 

analysis of soil metrics. Automated machine learning decision support systems that integrate 

climatic and soil moisture measurements can be used to create irrigation schedules (Adeyemi, 

2018b). With this method, different predictor variables have been utilized, along with different 

model types.  

Crane-Droesch used parametric, semi-parametric, and non-parametric models and 

through a comparison of traditional statistical and new machine learning methods, crop yield 

values were estimated using weather data. Giusti and Marsili-Libelli utilized a fuzzy decision 

system in predicting the volumetric soil moisture content based on local weather data. Upadhya 

and Mathew used fuzzy logic to estimate the crop yield of a given irrigation field, determining 

the optimized conditions to generate ideal values. Andrade et al. trained Artificial Neural 

Networks (ANNs) and integrated their function with the Irrigation Scheduling Supervisory 

Control and Data Acquisition System (ISSCDAS), evaluating the extent to which machine 

learning predictions can be used to manage an irrigation system autonomously. Adeyemi et al. 

used Long Short-Term Memory Networks (LSTMs), a class of Recurrent Neural Networks 

(RNNs) to create a dynamic neural network modeling system that could accurately predict the 

volumetric soil moisture content of three different sites of potato-growing farms in the United 

Kingdom with different soil contents based on past soil moisture, precipitation, and climatic 



measurements. These results were then compared with traditional projections from Forward Feed 

Neural Networks (FFNNs), a class of ANNs to determine which deep learning technique was 

superior.  

Many studies also validated their predictions either algorithmically using computer-

generated simulations to compare automated irrigation schedules with traditional irrigation 

practices, or experimentally by testing new irrigation schedules and determining if their 

implementation decreases crop water stress and improves water productivity. Adeyemi et al. 

used AQUACROP, a software developed by the Food and Agriculture Organization to simulate 

soil moisture dynamics and crop response to water deficits across the three different locations 

and soil types. Cao et al. applied short-term weather forecasts to predict precipitation to calculate 

water deficits that could be used in Alternate wetting and drying (AWD) irrigation, a common 

practice in rice paddy cultivation. These results were experimentally validated using different 

methods of irrigation applied across various irrigation fields to determine if irrigation scheduling 

to reduce water stress would be a viable option for rice paddy farming.  

1.4. Purpose  

There is an ongoing global problem with a lack of water, due to changes in the climate 

and poor water management practices. Despite developments and improvements in agriculture 

technology, WUE, and WP are not improving at similar rates. Ongoing climate change is 

projected to increase variability in rainfall, with more dry spells, droughts, and floods, further 

reducing rainfall and increasing the threat of a lack of fresh water, which further limits available 

resources (Rockstorm et al., 2007). This problem has negatively impacted the world food supply 

because of mass water wastage which significantly reduces crop yields. This also exacerbates 

rural poverty as 70% of low-income individuals who have a lack of access to food live in rural 



areas, meaning these areas require better agricultural practices (Rockstorm et al., 2007). In 

addition, reducing crop yields will further limit available food sources, increasing food 

insecurity. A possible cause of this problem is a lack of automated and efficient irrigation 

scheduling, as most currently agricultural systems use outdated and traditional methods of 

irrigation.  

The purpose of this project is to create an irrigation scheduling model using machine 

learning methods that can accurately predict soil moisture using various environmental factors 

and then validate these predictions using algorithmic testing. Some studies have employed 

similar methods in Europe (Adeyemi, 2018b) and irrigation effects have been vastly studied in 

Asia as well (Cao et al., 2019), but it is understudied in California, which provides the largest 

agricultural output in the United States and is an integral part of the world food supply. This 

study will determine if irrigation scheduling methods are beneficial using predictions and testing 

in this region. This model should be able to accurately predict soil moisture based on other 

environmental factors and can create irrigation scheduling systems that improve water use 

efficiency, fulfilling the project engineering goals.  

2. Methods 

2.1. Procedures 

2.1.1. Data Collection and Study Sites 

 The data was obtained from a soil moisture probe located at the Desert Chaparral in the 

University of California, Irvine. This data was obtained through a public access dataset, 

published in the University of Arizona’s Cosmic-Ray Soil Moisture Observing System 

(COSMOS) monitoring project, and selected because it provided near real-time irrigated field 

metrics and climatic data for use in a variety of applications including agriculture and water 



resources management. The data obtained included measurements of rainfall, average daily air 

temperature, daily maximum air temperature, daily minimum air temperature, and volumetric 

soil moisture content. The inputs and output values were used along with an optimization process 

called feature engineering, which involved new variables, “features,” being extrapolated from 

existing inputs. 

2.1.2. Data Cleaning and Preprocessing 

To be able to create a machine learning prediction model, the data first had to be 

transformed into a machine-readable format. This was accomplished by cleaning and 

standardizing the data values so they could be compared. The hourly data was resampled 

(recalculated and numerically transformed) to daily intervals. Climatic variables were also 

resampled, with their respective daily averages calculated, and daily precipitation amounts were 

recalculated to be the sum of irrigated water depth and average daily rainfall. The volumetric soil 

moisture content was also resampled to its average daily value, done by combining and 

averaging its various measurements throughout the day. These values were transformed based on 

model guidelines to minimize irrigated water use while maximizing water productivity, as 

proposed to guarantee optimal irrigation operation (Delgoda et al., 2016). The methods proposed 

by Delgoda et al. were cross validated by Adeyemi et al., ensuring this is a credible process that 

can be replicated and retested. 

The data cleaning process included the inputting of missing (null) values. Additionally, 

data mined from different sources could include false entries or mistakes, so one way of 

determining if the values are acceptable is only including values in a certain range, ensuring a 

false value (or potential outlier) does not cause inaccurate information to be included in the 

prediction model. This was done to ensure that the data used to algorithmically train the model 



was accurate and reliable. Additionally, for the prediction model, the data was standardized by 

calculating the z-scores by firstly converting all values into arrays, making the transformations 

using a scaler function, and then restructuring the data back into the data frame for analysis. This 

process was necessary to ensure that differences in ranges of quantities (due to different 

measurement units) did not affect model predictions. 

For the model creation, the dataset was divided into an 80:20 ratio, with 80% of the entire 

dataset used to train the model, and 20% used in testing. Testing data was used to compare actual 

values with predicted model values and could not be included in the training set to prevent 

overfitting.  

2.1.3. Recurrent Neural Network Model: Breakdown and Framework 

The model was developed using the Keras Deep Learning library in the Python 

programming language using Jupyter Notebooks. For predictive irrigation scheduling, a one-day-

ahead prediction of the soil moisture content was generated. This model was considered a 

Multiple Input and Single Output (MISO) System because soil moisture depends on the 

historical and present climate, precipitation, and soil moisture values.  

Traditionally, RNNs worked on present input values by considering feedback from 

previous outputs and storing the memory for a short-term period. However, since this structure 

fails to store information for a longer period, it is not as useful when long-term information is 

required to predict current output values. Thus, Long Short Term Memory (LSTM), a class of 

RNNs was used, which was useful in studying concerning historical data time series analysis 

(Hochreiter and Schmidhuber, 1997).  



 

Figure 1: Diagram showing the basic architecture of an LSTM model (Chollet, 2017) 

As indicated by the diagram above, LSTMs predict the next work in each sequence based 

on previous information (input values). For this project, the final predicted output value (t+1) 

was the volumetric soil moisture content. LSTMs have 3 different gates and weight vectors; the 

forget gate disregards information; the input gate handles all current inputs; and the output gate 

generates predictions at each time stage. Additionally, LSTMs are built with different layers. The 

“embedding” layer encodes label information into a vector, allowing similar labels with similar 

vectors to be clustered together. LSTM cell layers with dropout are where the neural network 

randomly drops some neurons, meaning one part of the model was sampled and trained in one 

iteration, and a different part was sampled in another iteration. The network loss was minimized 

through a statistical technique called Adaptive Moment Estimation (ADAM), which is based on 

the principles of Gradient Descent. Gradient Descent is an optimization algorithm used to 

iteratively compute the minimum of a function. With this method, ADAM prevented model 

overfitting by improving model performance methods to generate more accurate soil moisture 

predictions. 

2.1.4.  Model Algorithmic Evaluation 



 Once the LSTM model was created, it was used to make t+1 soil moisture predictions. To 

validate the accuracy of these predictions, residual plots of predicted and actual soil moisture 

values (from the testing data) were created to determine the error. Then, the mean squared error 

(MSE) of all the predicted values was calculated, with potential values from [0,), and a value 

closer to 0 is indicative of a stronger model. The coefficient of determination (R2 value) was also 

calculated, with potential values from 0,1, and a value closer to 1 is indicative of a stronger 

model. The predicted and actual values were also compared using a t-test to determine if the 

results were statistically not significant because the expected outcome searched for similarity 

between real and predicted values. 

3. Results and Analysis 

3.1 Test Site Evaluations  

Desert Chaparral UCI was the evaluation site selected for this project because Southern 

California remains a prevalent region in terms of the world agricultural supply. Initially, the 

process began with the notion that the designated area of interest would be in the American 

Midwest, with analysis across several states in this region, modeling the ideas after the study 

conducted by Adeyemi et al. However, certain limitations within the procedures existed, 

including a sheer lack of data and disorganized records, which hindered the ability to data-mine 

and select those locations. As indicated by the sample table above, the data coverage available 

for midwestern states was suboptimal, and since California had the largest agricultural yield, the 

experiment was modified to concentrate on several test sites in this state, as opposed to testing 

sites in several different states. 

3.2 Aggregated Dataset- Training Data Optimization 



Upon selection of the test site, multiple data sets were downloaded as Comma Separated 

Values (CSV), and the cleaning process involved resampling the data to have the date set as an 

index value. Additionally, there were discrepancies between the data for COSMOS and NOAA. 

Besides the different scales of measure (which did not affect the final model as the data was 

standardized), there were discrepancies between the frequencies in which the data was recorded. 

Soil moisture readings were recorded several times throughout the day, whereas the weather data 

records available only included daily readings. Thus, the data was analyzed by computing the 

mean daily soil moisture by grouping data values that had the same index value (date). Due to a 

lack of proper data and the subsequent cleaning process that ensued, parts of the initial data had 

to be completely disregarded, with other categories being heavily cut down; while 65,535 data 

points worth of readings were initially collected, this number was cut down to 2,902 values of 

clean, organized data with no null or incorrect numbers. This was another potential limitation 

because while this data was adequate for creating and testing a machine learning model, larger 

datasets are always desired to improve model performance, which may have hindered model 

prediction capability to a certain extent. 

Table 2: Sample (pre-standardized) aggregated dataset with soil moisture, maximum, minimum, average 

temperature, and precipitation using date as index value 

 



Table 2 depicts the various input and output values. The final aggregated dataset was 

standardized into z-scores by coding a data transformer using a RobustScaler function (from the 

ScikitLearn Python Library) and rearranging the data into arrays for analysis. 

 

Figure 2: Line plot of soil moisture readings vs. date (created using Seaborn Python library) 

 Figure 2 highlights a distinct cyclic pattern with the soil moisture based throughout a 9-

year time period (2011-2019). While the values have slight fluctuations, distinct trends emerge 

through the line plot, depicting how soil moisture readings predictably change throughout a year, 

depending on the temperature, precipitation, growing season timings, etc. This figure 

emphasized the importance of selecting the proposed machine learning model: a time series 

analysis. For prediction, the time of year is vastly important, and thus the data cannot be 

scrambled or randomized, because the neural network needs to take timing into consideration.  

3.3 LSTM Model Creation and Algorithmic Evaluation 

 For the model training process, hyperparameters were tested and optimized. The number 

of neurons, which affects the learning capacity of the network, was selected as 1. Typically, 



more neurons would be able to learn more structure from the problem but increasing this number 

will severely increase training time. This increased learning capacity may also potentially overfit 

the training data. The batch size, which controls the number of data subsamples used, was set at 

32, tailored to fit the relative size of the dataset. The time step value was set at 30, meaning that 

30 previous data values (about a month) would be considered in the prediction of the t+1 desired 

output. The data subsequences were not shuffled to retain the time series analysis as time-of-year 

was an important aspect of creating the model.  

 

Figure 3: Plot of the training loss and validation loss as the epoch number approached maximum value (30) 

 The validation losses were computed for the model to diagnose whether that fit was 

adequate for prediction, or whether the models were overfitted/under-fitted. Generally, if a 

model has a low train accuracy and a high train loss, then the model is under-fitted and if the 

model has a high train accuracy but a low validation accuracy then the model is overfitted. 

Figure 3 shows a plot of the training and validation losses, which are at relatively low values, 

and approach each other as the epoch value approaches 30. Thus, the model was well fit for the 

dataset.  



 

Figure 4: Historical data of Soil Moisture readings vs. Time Steps plotted for time period, with predicted values 

 

 

Figure 5: Historical data of predicted and actual Soil Moisture readings vs. Time Steps plotted for testing data period 

 Figures 4 and 5 depict the predicted (green) and actual (black) soil moisture models. 

These plots indicate the model was able to provide a good fit for the data and adhere to match its 

unique cyclic patterns. While this model was a good fit, as indicated by this plot, the computer 

used did not have enough RAM for heavy machine learning processing, so while the 

hyperparameters were optimized to the largest scope possible, there could be potential for an 

even more accurate model in the future. 



3.4 Model Statistical Evaluation 

Certain statistical tests were performed to further validate these results. Firstly, the mean 

squared error (MSE) was computed to be 0.213; this low value is indicative of an accurate 

model. The r2 value was also computed to be 0.852, which indicates that about 85% of the 

variation in the actual soil moisture values can be explained by the predicted y-values. A t-test 

was also run between the actual and predicted soil moisture values to determine if the results 

could be deemed significant. The resulting p-value was 0.47, greater than an alpha value of 0.05, 

meaning there is no statistically significant difference between the actual and predicted results, 

demonstrating model accuracy.  

When compared to the study by Adeyemi et al. in England, despite vast differences in 

geographic location and soil profiles, the study’s findings matched their results as the LSTM 

algorithmic structure was successful. The model choice was validated by Ayedemi et al. through 

their demonstration that between Forward Feed Neural Networks, LSTMS, and traditional 

statistical models, significant evidence remained in favor of the applications of LSTM models in 

soil moisture predictions and irrigation scheduling (Adeyemi et al., 2018b). Additionally, these 

predictions were successfully algorithmically and statistically verified, with a large r2 value and 

small MSE, like Adeyemi et al and Crane-Droesch. 

4. Conclusion 

4.1 Summary of Findings 

 In conclusion, the results of this project indicate the completion of the project’s 

engineering goals and fulfillment of the gap. The results of this study validate the completion of 

the project’s engineering goals and address a gap in the scholarly conversation.  Upon 

conducting a t-test, a p-value of 0.47 was obtained, greater than the alpha of 0.05, showing that 



there was no statistically significant difference between the actual soil moisture values and the 

model’s predicted values. This was an algorithmic and statistical verification of the efficacy of 

the model, demonstrating the use of LSTMs to create a prediction model. The results also 

demonstrate filling in the gap since California, which has the highest agricultural production in 

the US and is a major source of the world food supply, was heavily understudied. With this new 

information, the principles of optimizing certain hyperparameters, and the knowledge gained in 

terms of fine-tuning a machine learning model were greatly increased, which may create better 

soil moisture models and irrigation scheduling systems in general. 

4.2 Limitations 

One of the limitations of the data was the small region that was primarily focused on. 

Since only Southern California between Los Angeles and San Diego was considered, the 

observations generated findings for a small region, so while this model and its complexities 

influenced the understanding of soil moisture prediction capabilities in this region, this 

information is not necessarily applicable to the rest of the world. Additionally, there are many 

factors involved in creating a model, firstly in the crop yield parameters such as crop and soil 

type. Weather conditions, the accuracy of soil moisture probes, and access to clean and accurate 

data, all can change depending on the region of interest, so if implemented, soil moisture 

prediction models will have to be fine-tuned by territory or region of interest. Additionally, due 

to the limited RAM available on the computer used, the ability to test certain hyperparameters 

and optimize the model was hindered, so an LSTM model can be fine-tuned to generate even 

more accurate predictions. LSTM was also the only algorithm that was used in data modeling 

because it was heavily researched that this would be optimal for data type and type of 

predictions, but since other deep learning models or algorithms were not tested, there is always a 



possibility that more accurate soil moisture prediction models can be created using another 

decision support system or machine learning method. 

4.3 Implications 

This project utilizes machine learning algorithms to create soil moisture, prediction 

models. Since a comprehensive soil moisture model takes precipitation, groundwater, 

temperature, etc. into account and can predict the soil moisture for any given day in a year, this 

prediction can be used in irrigation scheduling. By knowing how much water is currently in the 

soil, we can use optimization equations based on the type of crop and soil to determine the 

maximum volumetric soil moisture content, and then determine if irrigation needs to be applied 

in a given day. The soil moisture model is the first step to creating a highly successful irrigation 

decision support system and enables an agriculturalist to conserve water by applying the exact, 

optimized amount of water. Predicting soil moisture also improves the water productivity in a 

system, since a crop is less likely to be overwatered or underwatered. These findings also 

demonstrate the importance of predictions in irrigation scheduling. While weather stations and 

soil moisture probes are currently used by agriculturalists to manually schedule irrigation for 

their crops, predictive models can create a more automated system, and as the accessibility of 

such technology expands, producing crops will become more efficient. 

4.4 Future Directions 

These findings precipitate several future projects to gain a better understanding of this 

field. Primarily, one of the largest shortcomings within the project was the lack of varied 

geographic locations for which data was available. Creating soil moisture prediction models is 

essential for irrigation scheduling, but there are many factors within a given region that can 

affect soil moisture, and while some climatic conditions were studied, such as temperature, 



precipitation, etc., ultimately a lack of data parameters contributed to fewer factors being 

observed. Future studies could aim to access more types of data with more climatic variables—

such as snow cover, sunlight, humidity, and evapotranspiration—as well as other irrigation field 

observations, such as soil type, crop type, and irrigation method. Ultimately, adding more input 

variables may heighten the accuracy of the model, provided measures are put into place to 

optimize hyperparameters without overfitting. Future studies could also investigate different 

regions, instead of one concentrated area, or investigate a specific irrigated field type. Overall, 

the success of any such projects ends up depending on the type, quality, and quantity of data 

available, so in the future, while public access data sources are sufficient, to gain better and more 

comprehensive access, work can be conducted in an irrigated field or local academic institutions. 

Additionally, future studies can look into creating extremely accurate models and then creating 

an automated decision support system built into a usable application for agriculturalists and 

farmers. This will enable farmers to tailor predictions to their own needs, and determine how 

much water must be applied, aiding in water conservation. Finally, another future study can 

attempt to use the predictions created here and test them in real-time, growing different crops 

using different irrigation scheduling methods (based on different soil moisture prediction values), 

in a way to test and confirm not just algorithmically or through simulations, but in a real irrigated 

field. 
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