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Personal Section:

One evening in the summer of 2020, well after the severity and endurance of the COVID-19
pandemic had become evident, I was having a chat with my father at the dinner table. Both
STEM people, our talks often leaned towards the topic of science, especially in the realm of
current events. This time, it was the matter of COVID testing that made its appearance. Testing,
so essential to managing an outbreak, yet so scarce when it was needed. That night, I learned
about a mostly unemployed method in the pandemic called “pooled testing,” where, rather than
testing polymerase chain reaction (PCR) samples individually, multiple are combined and tested
together. In theory, if a pooled sample were to test negative, it would indicate that all individual
samples of that pool are also negative, meaning many tests can be saved. So why not squeeze as
many samples as possible (without jeopardizing accuracy) into each pool? The issue here is that
with so many samples per pool, more pools are likely to test positive, and a// individuals of
positive pools must be retested to identify those with the disease. This posed an interesting
problem. If some balance between too many and too few individuals per pool could be found,
then the amount of tests and thus resources/money saved could be greatly boosted.

In the fall, junior year began, and [ started taking calculus in school. Combined with the
outside-of-the-box and analytical thinking skills I had developed from learning competition
math, | realized that my pooled testing puzzle was one that I could realistically examine.
Deriving formulas to represent pooled testing would take some creativity and understanding all
of its nuances would take time, but it felt doable, and more importantly, intriguing. As I began to
play with equations and research the mechanisms of pooled testing, I found deeper aspects that I
incorporated into my study, namely the issue of testing accuracy.

Over the course of my project, which spanned from late fall of 2020 to summer of 2021 (with
large pauses in between), I received advice from a mentor on the process of reviewing literature,
producing novel contributions in the field, and writing a paper. However, my research and
derivations were performed almost exclusively from the desk in my room. But even without an
extravagant lab or experiments to run, this intersection of science and mathematics and public
health was enough to fully entertain me.

To any high schoolers interested in research, particularly that which combines math and science,
I would say explore the questions that actually interest you, especially the ones that you find
lingering in your mind time after time. And once your curiosity is truly hooked by an idea, stay
motivated in pursuing it. Whether this leads to a research project or new skills, it will be well
worth your time.



Research Section:

Abstract:

The spread of COVID-19, kindled by a lack of mass testing in early stages, has affected
hundreds of millions of lives. Even with recent vaccination developments, such testing is still
critical. Thus, a timely, cost-efficient method for extensive testing is imperative for fighting the
pandemic. One solution is pooling multiple samples into a single PCR test. This study aims to

determine the optimal size of these pools based on prevalence rate and testing accuracy.

The R programming language was used to simulate pooling in a population with a prevalence

rate of 0.05. This revealed a binomial distribution, where each positive case in a pool represents
a “success.” The following formula (1) was derived: F = (1 — p)n - % , where F'is the

reduction factor, 7 is the pool size, and p is the prevalence. Accounting for testing sensitivity and

specificity, the modified reduction factor formula (2) becomes:
F =1-+--s5sa-1-p")-@1-5)1-p"
L=l-r-sa-a-phH-a-s)a-n"
where F, is the modified reduction factor, S, 1s the testing sensitivity, and S, is the testing

specificity. Plotting equation (2) revealed a single relative maximum in the first quadrant. Taking

the derivative and setting it equal to zero, the optimal pool size formula (3) was found:
0=n"(1 - p)"In(1 — p) (S, + S, =D +1

When §, and §, are held constant, as prevalence rate increases, pooling efficiency decreases. For
instance, when testing accuracy is perfect, p = 0.005corresponds to an optimal pool size of 15
and an 86% reduction in tests needed. At p = 0.2, however, the optimal pool size of 5 can only

save 13%, and at p = 0. 3, the reduction is negligible.

These findings allow for public health officials to perfect their design of a testing plan. Finally,
increasing specificity and decreasing sensitivity both result in increasing maximum reduction.
However, decreasing sensitivity leads to a higher risk of disease spread. Sufficient testing

sensitivity should not be sacrificed for higher pooled testing efficiency.



1. Introduction
Numerous clustered cases of pneumonia were reported from Wuhan, China, in December of
2019 (Centers for Disease Control and Prevention). In January, 2020, the cause of this was
determined to be a novel coronavirus, and was named severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) (Centers for Disease Control and Prevention).

The polymerase chain reaction (PCR) test, which amplifies a DNA sample by making countless
copies, has been the principal method for testing for SARS-CoV-2. On February 5th of 2020, the
U.S. Centers for Disease Control and Prevention began to send out PCR testing kits to state
testing labs (Patel). However, many of these kits had faulty negative controls that erroneously
caused false positives, so samples often had to be shipped to the CDC for testing (Patel). For

many crucial weeks, tracking of the initial COVID-19 outbreak was hampered.

This lack of efficient mass testing of SARS-CoV-2 was thus a large reason for the development

of the COVID-19 pandemic. As the pandemic progressed, testing capacity has remained an issue.
To properly monitor not only individuals but communities and larger trends as well, mass testing
is essential. Even with vaccinations recently becoming widespread, testing is still as necessary as

ever. However, testing can be costly, both in terms of time and resources.

One solution to this is pooled testing, where groups of individuals are pooled into a single PCR
test. Studies have shown that a positive sample can still be detected in a pool of 32 samples (dan
Yelin et. al, 2020). After the initial pooled stage, positive pools would still require testing of
individuals’ samples to identify specific cases. Pools that test negative, however, have no
potential cases to be detected, thus vast amounts of further tests can be saved. Because of the
large fluctuations in pooled testing efficiency, it is necessary to use the most ideal pool size.
Thus, the primary aim of this study is to derive an optimization equation. In addition, testing
accuracy may also affect the efficacy of pooled testing. This study will account for testing

sensitivity and specificity in the optimization to produce a more accurate equation.



2.  Methods and results
2.1. R coding procedure

In order to better understand the mathematics of pooled testing, a simulation was first coded with
R. Some hypothetical parameters were used in this process; prevalence rate (p), pool size (1), and
population size (N) were initially set equal to 0.05, 5, and 1,000 respectively. A vector of size

1000 was filled (1 to 1000) to represent the population and a vector of size 200 was created to

population (N)

. ), where each five number interval from 1 to 1000
pool size (n)

represent the number of pools (or

represents a pool (i.e., 1-5, 6-10, ..., 996—-1000). Then, fifty numbers from 1 to 1000 were
randomly selected to represent positive cases, and the number of positive cases in each interval
was tallied. Once the code was functional, this simulation was repeated 2,000 times, effectively
resulting in 400,000 pools and a total population of 2,000,000. The distribution was graphed and
appeared to be binomial (Section 3.1, figure 5).

2.2. Reduction factor formula
-t

t
Reduction factor (F) is defined as F = ———=, where t, is the number of tests needed without
t

o

using pools (standard testing) and t, is the number of tests needed with the usage of pools.
Because standard testing requires one test per person, t, is equal to N. Pooled testing on the other
hand, requires two rounds of testing: one test per pool initially, followed by individual testing of

the members of positive pools.

This first round requires % tests, equal to the number of pools, because each pool receives an

initial test. In the second round, all individuals in positive pools are re-tested, while negative
pools are finished. The true proportion of negative pools is equal to the probability that no

individuals of a pool test positive, and the true proportion of positive pools is equal to the
probability that at least one individual tests positive in a pool. The former is equal to (1 — p)n,
and the latter is the complement of this, or (1 — (1 — p)n). Multiplying (1 — p)n, the
proportion of negative pools, by % results in the number of negative pools, and multiplying this

by n, the number of people per pool, results in the total number of people in negative pools:



1 - p)n . % - n. The same can be done with the the proportion of positive pools to get

a-@a- p)n) . % - n as the total number of people in positive pools. Because testing

accuracy is assumed to be perfect, this expression represents the number of tests needed in the

second round. Figure 1 below visualizes the process of the derivation.

N subjects placed into
pools of n people each

Round 1 [ N/m pools are all tested

=

A # of positive tests = true number of
Negative pooled tests positive pools, or (1-(1-p)™)(N/n)

Tests needed = # of people in
pools that test positive, or

Round 2 No additional tests
(1-(1-p)")(N/n)(n)

Figure 1: Flowchart of a pooled testing approach with perfect testing accuracy. Bold

indicates number of tests needed in each round

Thus,t = Ly 1-@a- p)n) - L n. After substituting t, and t, into the formula for F
14 n n

and simplifying, the derivation is complete (and terms involving N cancel out, indicating that
population size theoretically does not have an effect):
n_ 1
F=Q0-p) -+ (1)
This equation is consistent with those produced in other studies, although a metric other than

reduction factor is typically used (discussed later in section 3.2) (Aragéon-Caqueo D et al, 2020).



2.2.1. Incorporating Testing Accuracy

The table below (Figure 2) illustrates the classifications of testing results. Let S, represent testing

# of true positives an
# of true positives + # of false negatives

sensitivity and S, represent specificity. By definition Sn =

S = # of true negatives
P T #of false positives + # of true negatives

. In the derivation above (section 2.2), perfect testing
accuracy is assumed. This means that sensitivity and specificity are both equal to 1. In reality,
however, this is not the case, so the number of positive test results would include both true

positives and false positives.

Disease Condition

Positive Negative
= Positive True positive False positive
7
5
=
% Negative False negative True negative
o

Figure 2: Testing classification table

S.and S, do not affect t,, as all subjects will be tested regardless of test accuracy when there is no
pooled testing. This also does not affect the first round of testing, since all pools still must

receive an initial test.

For the second round, (1 — (1 — p)n) . % - n, the theoretical actual number of people in

positive pools, would no longer equal the total number of tests needed. This is because the

imperfect testing accuracy means that some positive pools may be undetected. Therefore,
a-Qa- p)n) . % must be multiplied by Snto obtain the number of positive pools that also

test positive. Multiplying by » yields the number of people in these pools:



n, N
Sn(l—(l—p))~ o n
False positives, negative pools that test positive, would also contribute to the number of tests

needed. The number of false positive pools is equal to the false positive rate multiplied by the

number of negative pools. So, (1 — Sp) is multiplied by (1 — p)n . % Multiplying this then by

N
n results in the number of people in false positive pools: (1 — S ) 1 - p) — - n. The
figure below helps to illustrate this process.
N subjects placed into
pools of n people each
Round 1 N/n pools are all tested
Negative pooled tests Positive pooled tests
'a )
True positives = False positives =
(8,)(1-(1-p)")(N/n) (1-S )(1-p)"(N/n)
- l 4
4 )
Round 2 No additional Tests needed for true positives = Tests needed for false
tests (S,)(1-(1-p)")(N/n)(n) positives = (S, )(1-p)"(N/n)
& 4

Figure 3: Flowchart of a pooled testing approach with testing sensitivity S, and specificity S,.

Bold indicates number of tests needed in each round

The sum of the number of people in true positive pools and the number of people in false

positive pools is the total number of people who receive a test in the second round. Hence,



N n N n N .
tp =Ly [Sn(l -—a-mH - n]+ [(1 _Sp)(l -p) - n], and the modified

reduction factor formula is:

Fo=l-0=SA-01-p")=-01-5)1-p' )

m

2.3. Formula for optimal pool size
Equation (2) was graphed with F, as a function of n to determine a procedure for optimization.
Sensitivity, specificity, and prevalence rate are constants, so S, S,, and p were arbitrarily

assigned values of 1, 1, and 0.05, respectively, for visualization purposes.

Figure 4: the graph of equation (2) has a relative maximum in the first quadrant

The graph appears quite complex, but it can be simplified. Pool size must be greater than or
equal to 1, so negative values of n can be ignored. Further, the intended reduction factor will
always be a positive value so negative values of F,, can be ignored as well. This leaves only the
first quadrant, in which there is a single relative maximum. The value of n that corresponds to
this maximum is the pool size that causes the greatest possible reduction factor, i.e., the optimal
pool size. This inspires the use of calculus, as the maximum point must have an instantaneous
slope of zero. Thus, by taking the first derivative of equation (2) and setting it equal to zero, the
final formula for optimal pool size can be obtained. The derivative of equation (2) is

dF n*(1-p)"In(1=p)(S_+S —1)
= = ~—~—— When the numerator equals zero, the derivative equals zero, so

2
dn n

the final optimization equation is:



0=n"(1 — p'In(L - p) (S, + S —D+1 3)

3. Discussion
3.1. Binomial distribution
One major result is the observation that the distribution of the number of positive cases in pools

is binomial. This was shown through the R simulation, where n=5, p=0.05.

Frequency Distribution of the Number of Positive Cases in a Pool
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Figure 5: overlaid frequency histograms of the simulated distribution and binomial distribution

In figure 5, because the simulated distribution (red) matches the expected binomial distribution
(blue), the overlaid histograms form what appears to be a single purple distribution. This

provides evidence that the distribution is in fact binomial.

Further, in pooled testing, the pool size is fixed, each person can only test positive or negative,
and the prevalence rate is constant. Thus, each pool is just a series of n Bernoulli trials, so it is
logical that the distribution is binomial when there is a large number of pools. This allows for

calculation of the proportion of pools with some specific number of positive cases using the

binomial probability mass function:

f) =Qp'a-p" 4)



In this formula, # is the number of trials, p is the probability of success, and x is the number of
successes. Under the context of pooled testing, f(x) represents the probability that a pool of n

people has x positive cases given a prevalence rate p.

It should also be noted that in reality, each trial may not be independent. Creation of pools would
likely be done via cluster sampling, as the grouping of potential positive individuals into the
same pool may boost the reduction factor. Or, this could provide more convenience (e.g.,
members of the same family are placed in the same pool). Overall, the distribution will not be
perfectly binomial due to the fact that for any contagious disease it is almost impossible for

individuals to be independent.

3.2. Reduction factor
In most of the studies regarding this matter, an explicit definition of reduction factor is not used;
instead, a variable for the average minimum number of tests needed to diagnose a subject is used
(Aragon-Caqueo D et al., 2020). In a simple scenario where all individuals are tested, the
average number of tests needed per individual is just 1. If pooled testing allows this number to
fall to 0.4, for instance, then the other 0.6 is the amount saved. Thus, the reduction factor is the
complement of the average minimum number of tests needed per individual. Reduction factor
was used in this study because it makes for an easier interpretation. It also allows for a

convenient conversion to the cost saved: (reduction factor)*(cost of test).

3.2.1. Modified reduction factor
The modified reduction factor formula (2) shows the effect of specificity and sensitivity. When
S, and S, both equal one, formula (2) becomes equal to formula (1). This aligns with the fact that

formula (1) assumes perfect testing accuracy.

When sensitivity (S,) increases, Sn(l -1 - p)n )also increases, so the reduction factor

decreases. This is reasonable because sensitivity measures the ability of a test to accurately
identify patients with a disease. Higher sensitivity means positive samples will be more likely to

be detected, which leads to more tests being needed to re-test the individuals of those positive



pools. Conversely, lower sensitivity means more positive samples go unnoticed. Negative pools

are not re-tested, so the reduction factor is increased artificially.

When specificity (S,) increases, (1 — Sp)decreases, so (1 — Sp)(l - p)nalso decreases, which

leads to an increase in the reduction factor. Logically, this is because specificity is a measure of a
test’s ability to accurately identify patients who do not have a disease. Thus, higher specificity
means a higher proportion of actual negative samples will be correctly classified by the test as

negative. As a result, there are less false positives, so more tests can be saved.

It is important to note that an increase in reduction factor through a decrease in sensitivity is not
desirable. An increase in the reduction factor is contingent on having sufficient testing accuracy

first. An increase in reduction factor through increasing specificity, on the other hand, is ideal.

3.3.  Usage of formula (3) for optimal pool size
Formula (3) provides the ability to calculate precise optimal pool sizes based on prevalence rate,

sensitivity, and specificity, but there are a number of nuances to be aware of.

A slight drawback of equation (3) is that since it is in the exact form, the formula makes it too
difficult to solve for n. Thus, one must substitute the constant values (p, S,, and S,) and input the
resulting equation into a computation engine, such as WolframAlpha. The engine can then solve

for the value of n through the iterative method.

Additionally, there are domain restrictions of equation (3) to be aware of. Group size n must be
an integer greater than 1, as pools must contain an integer number of two or more people. This
means that negative solutions of equation (3) can be disregarded. Further, equation (3) may
return two positive solutions for zn. This is because the graph of formula (2) may have a relative
minimum in the fourth quadrant, meaning a second positive value of # that has a first derivative
of 0. However, this second solution corresponds to a negative reduction factor, meaning more
tests would be used than in a simple testing approach. The purpose of pooled testing is to achieve
a positive reduction, so the smaller of the two positive solutions for # is the desired one. To find
the true optimal pool size, the value should then be rounded as necessary to the next highest or

lowest integer, depending on which yields a higher reduction factor.



3.4. Impact of prevalence rate on pooled testing strategy
To understand the impact of prevalence rate on the reduction factor, equation (2) was graphed for

varying prevalence rates with S, and S, equal to one.

Graphs of Equation (2) for Varying Prevalence Rates
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Figure 6: First quadrant graphs of equation (2) for a number of common prevalence rates

Figure 6 demonstrates that the reduction factor curves experience a downward shift as
prevalence rate increases. Observing the maximum of each curve, there are also significant

decreases in the maximum reduction factor.

The curves also suggest that there is a prevalence rate at which pooled testing is no longer a
logical strategy. On the curve representing p=0.3, the peak is barely above the x axis; for greater
prevalence rates, even the maximum reduction factor will become negative, indicating a waste of
resources if pooled testing is used. For a reduction factor that is negative or 0, the pooled testing
strategy is clearly not ideal. For a reduction factor that is small but positive, researchers must
decide whether the potential inconvenience associated with pooling samples is worth the

reduction in resources.



4. Conclusion
Pooled PCR testing is a strategy at the forefront of fighting the pandemic. In order to effectively
execute this strategy, it is necessary to have a means of calculating and predicting related
statistics. This study related pooled testing to the binomial distribution, derived formula (2) for
the modified reduction factor, and derived formula (3) for the optimal pool size while accounting
for testing accuracy. These findings allow for public health officials to perfect their design of a
testing plan. Finally, increasing specificity and decreasing sensitivity both result in increasing
maximum reduction. However, decreasing sensitivity leads to a higher risk of disease spread.

Sufficient testing sensitivity should not be sacrificed for higher pooled testing efficiency.
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