
ON THE RELATIONSHIP BETWEEN PAIN VARIABILITY AND RELIEF IN 

RANDOMIZED CLINICAL TRIALS 

 

Siddharth Tiwari, with Andrew Vigotsky and A. Vania Apkarian 

PREFACE 

Pain is tricky to study. Along with being the most prevalent chronic medical condition in 

the world, pain forces us to combine our understanding of physiology and the philosophy of the 

self and mind. This is because pain is considered a “subjective experience”, limited to the 

individual themselves.  

We can think of many examples where two different people are presented with the same 

stimuli or situation and produce a different response: stubbing a toe or holding a hot object, for 

example. There are even situations where we may respond to stimuli that shouldn’t result in pain. 

A famous example from 1995 describes a 29-year-old builder who jumped onto a 7-inch nail. He 

wailed in pain on his stretcher and the ambulance as the nail stuck out of both sides of his steel-

toed boot. But when the doctors peeled off the builder’s boot, they found that the nail hadn’t 

penetrated any part of his foot. It had passed between his toes, without a scratch. 

This is the problem of chronic pain. Normal, or acute pain, presents itself within 

individuals when one encounters painful stimuli; researchers believe that this is possibly part of 

an evolutionary mechanism within humans to protect themselves from life-threatening situations. 

This means we constantly assess our surroundings for potentially harmful stimuli, and when we 

feel pain, it’s because our brain senses a potential problem. In contrast, chronic pain persists 

without a stimulus, becoming increasingly painful as it develops. This means pain is entirely 

psychological or subjective. At this moment, no medication can cure a person of chronic pain. 

Opioids are the only medications capable of analgesia (reducing pain) effectively and 

consistently enough for chronic pain, which carry the potential risk of addiction and overdose. 

Several members of my family in India suffer with chronic pain in various forms, which 

they attempt to fight with over-the-counter medicine and homemade herbal remedies. Some of 

them refuse to take their prescribed opioids because of the risk of addiction.  

While visiting India, I’d sometimes be tasked to bring them their Tylenol or chai if their 

pain flared up. They’d also frequently ask each other how much pain they’re in on a scale of one 

to ten; they’d hold up their fingers promptly on one or two hands.  

It fascinated me. Even though an aunt suffered with fleeting lower back pain and a great-

uncle suffered with a slow burn on his knees, they could both hold up six fingers: their pain was 

entirely different, yet they both held five fingers on one hand and one finger on the other. My 

paternal grandma’s knee pain would randomly come back at nine fingers after being only one or 

two for the past three days whereas my uncle’s pain would always stay between five and seven 

fingers without budging.  

For this reason, as I grew older, I became interested with quantifying and modeling 

chronic pain’s longitudinal trajectory (development/change over time). The confusion that I’d 

felt when seeing my family members report their pain were among the exact problems that 



chronic pain researchers grapple with; we simply do not understand or have the ability to 

precisely predict how pain changes and develops within subjects. By focusing efforts to 

understand pain’s development within and between subjects, we could help clinicians offer 

treatment more specific to subjects as well as help clinical trials identify possible, non-opioid 

pain medications with more efficiency. It would also offer more insight into scientifically 

interpreting other types of qualia or subjective experience, which could fill gaps in our 

understanding of thought, perception, and behavior. 

To learn more about this area, I immersed myself in statistics, particularly linear 

regression and Bayesian statistics. Thankfully my research mentors, Andrew Vigotsky and Dr. 

A.V. Apkarian, always welcomed my frequent questions and confusion. Through months of their 

guidance and opportunities to research, I began to see math’s ability to simplify even the most 

complex of phenomena. It felt like art: with different types of regression, you’d canvas hundreds 

of thousands of data points onto a 600 x 600-pixel canvas. You’d know when you’d have made a 

masterpiece, because the points would align in a way where everything would make sense. 

There are potential pitfalls for these paintings of the world, unfortunately. A simple linear 

regression, used improperly, can be overwrought with bias and confounding effects. With the 

increased availability of data available to the public, it has become increasingly dangerous to 

make assumptions of the world around us. It is the premise of the project that I present to you 

today. My project challenges almost two decades of research that confirms the presence of a 

statistical phenomena and practice within analgesic clinical trials that could have potentially 

invalidated their results. 

Pain or not, to produce a more accurate, working model of the world, it is necessary that 

the data that we obtain, the methods that we use to analyze them, and the conclusions that we 

draw, operate on valid assumptions and understanding. This is the power of combining 

mathematics and science; we’re able to unearth previously invisible relationships around us. 

There is so much left to operationalize, to reason, to understand. With this in mind, don’t forget 

to challenge your own assumptions as well as the assumptions of the world around you to bring 

forth a clearer understanding of the tricky things in our world. This is where the progress of 

science lies.  



INTRODUCTION 

Randomized clinical trials are the principal method by which researchers assess treatment efficacy. 

Although clinical trials can provide valid evidence of a treatment’s average effect (relative to some 

control), they often fail to demonstrate meaningful drug effects relative to placebo. Some 

researchers have cited high “placebo response” as the main cause of these “failures” (Khan et al., 

2003; Katz et al., 2008; Tuttle et al., 2015; Alexander et al., 2021), suggesting it may be prudent 

to exclude “high placebo responders” prior to trial commencement. 

Researchers have sought out correlates to predict pain relief in the placebo-treated group, 

which could then be used to exclude patients who would contribute to clinical trial “failure” via 

their “placebo response.” One of these identified correlates is pain variability, which has been 

shown to negatively correlate with subsequent pain relief in the placebo-treated group across 

several chronic pain conditions (Harris et al., 2005; Farrar et al., 2014; Treister et al., 2019). In 

other words, patients with the greatest pain variability at baseline tend to have the greatest 

decreases in pain following placebo administration. This relationship is specific to pain relief in 

the placebo group in some (Farrar et al., 2014) but not all studies (Treister et al., 2019), and even 

absent in others (Gillving et al., 2022). 

Although previous work demonstrates a relationship between baseline pain variability and 

pain relief, other factors such as regression to the mean and natural history can contribute to 

improvements in pain reports (Dworkin et al., 2012; Farrar et al., 2014). Indeed, previous studies 

have acknowledged, but have not accounted for, the influence of these factors on decreases in pain 

reports. In this work, we aim to improve our understanding of the prognostic value of baseline pain 

variability by adjusting for baseline pain, natural history, and regression to the mean. Since 

baseline variability is simple to collect and calculate (cf. neuroimaging and genetic traits that are 

also correlated with greater pain relief following placebo; e.g., (Hall et al., 2012; Vachon-Presseau 

et al., 2018)), its prognostic value and (placebo-) specificity could be easily exploited in both trials 

and practice. 

 

METHODS 

Datasets 

This was a secondary analysis of two, previously published randomized, double-blind, placebo-

controlled trials conducted by our research group at Northwestern University in Chicago, IL.  

Table 1 contains the demographic characteristics of each study’s subjects. 

 

Table 1: Demographic Characteristics of Placebo I and Placebo II. 

  Age (SD), years Women (%) 

Placebo I 

No treatment (n = 20) 46 (13) 10 (50) 

Placebo (n=43) 46 (12) 14 (33) 

All (n=63) 46 (12) 24 (38) 

Placebo II No treatment (n=11) 55 (10) 7 (64) 



Placebo (n=32) 58 (10) 18 (56) 

Drug (n=33) 53 (14) 12 (36) 

All (n=76) 55 (11) 38 (52) 

 

Statistical Analysis 

All analyses were performed using R (R Core Development Team, 2020). We built a single linear 

regression model for each study (2 in total), using pre-intervention pain (mean of the first 7 days 

in the pre-intervention period), group, and baseline pain variability (SDbaseline, calculated as the 

standard deviation of the pre-intervention phase) as independent variables and post-intervention 

pain (mean of the last 7 days in the intervention period) as the dependent variable. In addition to 

these three independent variables, we included the interaction between group and SDbaseline (herein 

referred to as group×SDbaseline interaction) to isolate the effect of SDbaseline on post-intervention pain 

by group. The effects of group and the group×SDbaseline interaction were computed using modified 

backward contrasts, in which each group was compared to the previous group (placebo I: placebo 

vs. no treatment; placebo II: placebo vs. no treatment, drug vs. placebo) and no treatment was the 

intercept or reference group. This was done to compare the additive effect of placebo relative to 

no treatment and drug relative to placebo, meaning that the previous level controls the level 

succeeding it, thereby adjusting for natural history (since the no treatment group represents the 

natural course of pain), regression to the mean (through the pre-intervention score covariate and 

no treatment group), and placebo effects. Specifically, the following contrast matrices were used 

to compare differences between the two groups: 

𝐂Placebo I = [
𝟏 𝟎
𝟏 𝟏

] , 

𝐂Placebo II = [
𝟏 𝟎 𝟎
𝟏 𝟏 𝟎
𝟏 𝟏 𝟏

]. 

The rows of these matrices denote the groups in each study (factors for no treatment in row 1, 

placebo in row 2, and drug in row 3) and the columns represent the weight of each parameter on 

that group. This is mathematically equivalent to dummy coding such that patients in the no 

treatment group receive a 0 for placebo and 0 for drug; patients in the placebo group receive a 1 

for placebo and 0 for drug; and patients in the drug group receive a 1 for placebo and 1 for drug. 

These contrasts enabled us to isolate the effects of SDbaseline on post-intervention pain by group.  

After obtaining the isolated effects, we calculated semi-partial correlations (𝑟𝑠𝑝 =

sgn(𝑡)√
𝑡2(1−𝑅2)

𝑑𝑓
, where t is the t-statistic of the effect of interest, R2 is the model coefficient of 

determination, and df is the residual degrees of freedom) between SDbaseline and post by group. 

Compatibility intervals (CI) for rsp were calculated using the bias-corrected and accelerated 

bootstrap with 1,000 replicates. Data are depicted using adjusted effects (DuMouchel, 1988). 

 

 



RESULTS 

In total, 139 subjects were examined (63 subjects in Placebo I; 76 subjects in Placebo II). Figure 

1 depicts the independent relationship between baseline pain variability and relief for each group 

after adjusting for pre-intervention pain, allowing each group to have a different effect of baseline 

pain variability. Model parameters and semi-partial correlations associated with adjusted group 

effects can be found in Table 2. Including SDbaseline in the models as a linear (not interactive) 

predictor increased Placebo I and Placebo II model R2’s by 0.01.  

 

 
Figure 1. Adjusted post-intervention pain as a function of SDbaseline and group.  

We fit a linear regression to each study, which modeled post-intervention pain as a function of pre-

intervention pain, SDbaseline, and group. Here, we depict the relationship between SDbaseline and post-

intervention pain after adjusting for pre-intervention pain. In Placebo I, the no treatment group has 

a weak negative correlation; the placebo group’s SDbaseline is not correlated with post-intervention 

pain. In Placebo II, all groups demonstrate negligible correlations with SDbaseline. 

 

Table 2: Relationships between baseline pain variability and relief by group.  

 𝛽̂ (CI) rsp (CI) 

Placebo I 
No treatment (n = 20) −1.0 (−2.1, 0.0) −0.22 (−0.43, −0.02) 

Placebo (n=43) 1.2 (−0.1, 2.5) 0.22 (0.03, 0.42) 

Placebo II 

No treatment (n=11) −0.2 (−1.3, 0.8) −0.02 (−0.08, 0.02) 

Placebo (n=32) 0.0 (−1.2, 1.2) 0.00 (−0.07, 0.07) 

Drug (n=33) 0.0 (−0.8, 0.8) 0.00 (−0.10, 0.12) 



Compatibility intervals (CI) are presented at the 95% level. 𝛽̂ = unstandardized estimate from the 

marginal effect (expected change in post-intervention pain per unit increase in baseline pain SD), 

rsp = semi-partial correlation coefficient.DISCUSSION 

The purpose of this study was to quantify and isolate the relationship between baseline pain 

variability and post-intervention pain by group in two randomized, placebo-controlled clinical 

trials. Our work extends that of previous research by adjusting for the effects of regression to the 

mean and natural history via a no treatment control group (McDonald et al., 1983; Artus et al., 

2010; O'Connell et al., 2015). By assuming that pain relief is a linear combination of natural 

history, regression to the mean, the placebo effect, and the drug effect,1 we estimated the placebo- 

and drug-specific effects of SDbaseline on post-intervention pain.  

Contrary to previous work, we observed negligible correlations in our primary model, with 

SDbaseline capturing ≲ 4% of the variance in post-intervention pain across groups in both studies. 

Of principal interest was the placebo-specific effect, which previous studies suggest is on the order 

of r ≈ −0.3. After adjusting for the no treatment group and pre-intervention pain, our placebo-

specific estimates were incompatible with these previous estimates (Table 1). However, our results 

are consistent with the recent findings of Gillving et al. (2022), who observed negligible 

correlations between variability and improvements in patients who received placebo. Together, 

these results suggest that SDbaseline may not be a strong, consistent, and “placebo”-specific predictor 

of pain relief across populations.  

The magnitude and precision of our estimates were sensitive to modeling strategy. When 

modeling the groups separately, our effect estimates were larger and had greater variance, 

especially Placebo II. Thus, modeling the groups separately produced CIs that encompass 

previously reported estimates, but our point estimates were still relatively small and did not favor 

the placebo group. These results are suggestive that modeling differences may partly explain the 

discrepancy between studies. Similarly, differences in populations and sample sizes are important 

factors to consider (Harris et al., 2005; Farrar et al., 2014; Treister et al., 2019; Gillving et al., 

2022).  

Studies validating a SDbaseline-based prediction model are lacking. Nevertheless, the utility 

of SDbaseline for trial exclusion is dubious. Even if SDbaseline or some other variable was strongly 

predictive of pain relief following placebo, the removal of so-called “placebo responders” would 

also affect the active treatment group, especially since “placebo effects” are thought to be one 

component of the active treatment effects. Finally, although removing “placebo responders” would 

theoretically improve treatment effect estimates, the observed treatment effect for such a study 

would answer a different question since the sample is conditioned on SDbaseline. This may result in 

an optimistic, ecologically questionable estimate that may be unlikely to translate to the clinic.  

Rather than trying to optimize treatment effect estimates in trials using peculiar exclusion 

criteria, researchers should optimize treatments and thus their effect estimates for the ecological 

 
1 Although additive assumptions are common, they are likely not true in the mechanistic sense (Kube and Rief, 2017). 

Yet, they may serve as reasonable first-degree approximations with high utility, allowing researchers to simplify their 

experiments (cf. full-factorial designs) and draw pragmatic conclusions.  



patient population. After all, the goal of research is not to find large effects—it is to find large 

effects that will successfully translate and improve lives. Notwithstanding the limitations of 

conditioning on SDbaseline for trial inclusion, since SDbaseline may not be strongly predictive nor has 

it been validated as a prognostic variable, but is still able to capture variance in trial endpoints 

(Harris et al., 2005; Farrar et al., 2014; Treister et al., 2019), it may be well-advised to include as 

a covariate to improve statistical efficiency and estimates of treatment effects (Schelchter and 

Forsythe, 1985). 

 

REFERENCES 

Alexander, R.C., Raudibaugh, K., Spierings, E.L.H., and Katz, N. (2021). A 3-way Cross-over 

Study of Pregabalin, Placebo, and the Histamine 3 Receptor Inverse Agonist AZD5213 in 

Combination With Pregabalin in Patients With Painful Diabetic Neuropathy and Good 

Pain-reporting Ability. Clin J Pain 37, 38-42. doi: 10.1097/AJP.0000000000000886. 

Artus, M., van der Windt, D.A., Jordan, K.P., and Hay, E.M. (2010). Low back pain symptoms 

show a similar pattern of improvement following a wide range of primary care treatments: 

a systematic review of randomized clinical trials. Rheumatology (Oxford) 49, 2346-2356. 

doi: 10.1093/rheumatology/keq245. 

DuMouchel, W. (Year). "Graphical Representations of Main Effects and Interaction Effects in a 

Polynomial Regression on Several Predictors", in: Computer Science and Statistics: 

Proceedings of the 20th Symposium on the Interface). 

Dworkin, R.H., Turk, D.C., Peirce-Sandner, S., Burke, L.B., Farrar, J.T., Gilron, I., Jensen, M.P., 

Katz, N.P., Raja, S.N., Rappaport, B.A., Rowbotham, M.C., Backonja, M.M., Baron, R., 

Bellamy, N., Bhagwagar, Z., Costello, A., Cowan, P., Fang, W.C., Hertz, S., Jay, G.W., 

Junor, R., Kerns, R.D., Kerwin, R., Kopecky, E.A., Lissin, D., Malamut, R., Markman, 

J.D., McDermott, M.P., Munera, C., Porter, L., Rauschkolb, C., Rice, A.S.C., Sampaio, C., 

Skljarevski, V., Sommerville, K., Stacey, B.R., Steigerwald, I., Tobias, J., Trentacosti, 

A.M., Wasan, A.D., Wells, G.A., Williams, J., Witter, J., and Ziegler, D. (2012). 

Considerations for improving assay sensitivity in chronic pain clinical trials: IMMPACT 

recommendations. Pain 153, 1148-1158. doi: 10.1016/j.pain.2012.03.003. 

Farrar, J.T., Troxel, A.B., Haynes, K., Gilron, I., Kerns, R.D., Katz, N.P., Rappaport, B.A., 

Rowbotham, M.C., Tierney, A.M., Turk, D.C., and Dworkin, R.H. (2014). Effect of 

variability in the 7-day baseline pain diary on the assay sensitivity of neuropathic pain 

randomized clinical trials: an ACTTION study. Pain 155, 1622-1631. doi: 

10.1016/j.pain.2014.05.009. 

Gillving, M., Demant, D., Holbech, J.V., Vase, L., Bach, F.W., Jensen, T.S., Finnerup, N.B., and 

Sindrup, S.H. (2022). Impact of variability in baseline pain on the placebo response in 

randomized, placebo-controlled, crossover trials in peripheral neuropathic pain. Pain 163, 

483-488. doi: 10.1097/j.pain.0000000000002374. 

Hall, K.T., Lembo, A.J., Kirsch, I., Ziogas, D.C., Douaiher, J., Jensen, K.B., Conboy, L.A., Kelley, 

J.M., Kokkotou, E., and Kaptchuk, T.J. (2012). Catechol-O-methyltransferase val158met 

polymorphism predicts placebo effect in irritable bowel syndrome. PLoS One 7, e48135. 

doi: 10.1371/journal.pone.0048135. 

Harris, R.E., Williams, D.A., McLean, S.A., Sen, A., Hufford, M., Gendreau, R.M., Gracely, R.H., 

and Clauw, D.J. (2005). Characterization and consequences of pain variability in 

individuals with fibromyalgia. Arthritis Rheum 52, 3670-3674. doi: 10.1002/art.21407. 



Katz, J., Finnerup, N.B., and Dworkin, R.H. (2008). Clinical trial outcome in neuropathic pain: 

relationship to study characteristics. Neurology 70, 263-272. doi: 

10.1212/01.WNL.0000275528.01263.6c. 

Khan, A., Detke, M., Khan, S.R., and Mallinckrodt, C. (2003). Placebo response and 

antidepressant clinical trial outcome. J Nerv Ment Dis 191, 211-218. doi: 

10.1097/01.NMD.0000061144.16176.38. 

Kube, T., and Rief, W. (2017). Are placebo and drug-specific effects additive? Questioning basic 

assumptions of double-blinded randomized clinical trials and presenting novel study 

designs. Drug Discov Today 22, 729-735. doi: 10.1016/j.drudis.2016.11.022. 

McDonald, C.J., Mazzuca, S.A., and McCabe, G.P., Jr. (1983). How much of the placebo 'effect' 

is really statistical regression? Stat Med 2, 417-427. doi: 10.1002/sim.4780020401. 

O'Connell, N.E., Moseley, G.L., McAuley, J.H., Wand, B.M., and Herbert, R.D. (2015). 

Interpreting Effectiveness Evidence in Pain: Short Tour of Contemporary Issues. Phys Ther 

95, 1087-1094. doi: 10.2522/ptj.20140480. 

R Core Development Team (2020). "R: A language and environment for statistical computing". 

(Austria, Vienna: R Foundation for Statistical Computing). 

Schelchter, M.D., and Forsythe, A.B. (1985). Post-hoc selection of covariates in randomized 

experiments. Communications in Statistics - Theory and Methods 14, 679-699. doi: 

10.1080/03610928508828942. 

Treister, R., Honigman, L., Lawal, O.D., Lanier, R.K., and Katz, N.P. (2019). A deeper look at 

pain variability and its relationship with the placebo response: results from a randomized, 

double-blind, placebo-controlled clinical trial of naproxen in osteoarthritis of the knee. 

Pain 160, 1522-1528. doi: 10.1097/j.pain.0000000000001538. 

Tuttle, A.H., Tohyama, S., Ramsay, T., Kimmelman, J., Schweinhardt, P., Bennett, G.J., and 

Mogil, J.S. (2015). Increasing placebo responses over time in U.S. clinical trials of 

neuropathic pain. Pain 156, 2616-2626. doi: 10.1097/j.pain.0000000000000333. 

Vachon-Presseau, E., Abdullah, T.B., Berger, S.E., Huang, L., Griffith, J.W., Schnitzer, T.J., and 

Apkarian, A.V. (2021). Validating a biosignature predicting placebo pill response in 

chronic pain in the settings of a randomized controlled trial. Pain. doi: 

10.1097/j.pain.0000000000002450. 

Vachon-Presseau, E., Berger, S.E., Abdullah, T.B., Huang, L., Cecchi, G.A., Griffith, J.W., 

Schnitzer, T.J., and Apkarian, A.V. (2018). Brain and psychological determinants of 

placebo pill response in chronic pain patients. Nat Commun 9, 3397. doi: 10.1038/s41467-

018-05859-1. 

 

Link to full publication: https://doi.org/10.3389/fpain.2022.844309 

Link to statistical analysis: https://github.com/siddharth-r-tiwari/pain-variability-and-relief 

Email: sid.r.tiwari@gmail.com 

 

https://doi.org/10.3389/fpain.2022.844309
https://github.com/siddharth-r-tiwari/pain-variability-and-relief
mailto:sid.r.tiwari@gmail.com

