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Personal Section 

 My research journey started from when I was a volunteer at a memory and rehabilitation center at 

my local city. There, I saw the drastic effects of neurodegenerative diseases on individuals making it 

incredibly hard to continue daily life. Motivated by my interest in neuroscience, I decided to start a 

research project in computational neuroscience. 

 Due to COVID-19 restrictions, I performed all parts of my research at home. Due to the 

computational aspects, I first had to learn advanced calculus, linear algebra, differential equations, 

machine learning, genomics, and several programming languages. I spend hours upon hours learning from 

a plethora of online courses, tutorials, articles, and books, until I had learned enough to start researching. 

My next step was to identify a project that would help alleviate conditions for neurodegenerative disease 

affected patients. After months of hard work, I succeeded in created NeuroXNet, a genomics and AI 

powered application with diagnostic and treatment capabilities for neurodegenerative diseases. 

 Through my research journey, I learned not only unique skills in computer science, mathematics, 

and neuroscience but also the power of science and mathematics in solving real world problem faced by 

millions throughout the world.  

My advice for any high school student who would like to undertake a research project in the 

sciences is to not be daunted by the terminology and research methodology required to succeed in 

research. Research can be intense at times where there seems to be no way to improve a machine learning 



model or to prove a specific theorem. In these times, I would suggest trying new techniques and methods 

to succeed. I would also suggest focusing on fields that are interesting, so that a student is willing to 

spend months or even years researching a topic in the area without losing motivation. 

Research Section 

I. Introduction 

1.1 Background 

Neurological disorders continue to affect millions of people worldwide, with diseases leading to loss 

of cognitive function, a decline in memory, and even death. These diseases contribute to nearly a trillion 

dollars of healthcare spending and drastically change the lives of those affected. With the advent of new 

medical imaging and computational techniques, it has become possible to use large amounts of imaging 

data to build and train deep learning models that can diagnose many diseases with high accuracy rates 

using clinical tests and medical imaging tests like MRI. Some of the most common neurodegenerative 

disorders include Alzheimer’s disease, Parkinson’s disease, and Mild Cognitive Impairment.  

1.2 Previous Literature 

Through the usefulness of large amounts of data and advancements in medical imaging research, it 

has become possible to diagnose and even treat patients with diseases in various fields of medicine. A 

large amount of medical imaging research using MRI data has  been used to classify AD from normal 

patients. For instance, Al- Khuzaie et al. [1] developed a new model, AlzNet, which achieved an accuracy 

of 99.30% in diagnosing AD from normal using 2D MRI slices. One of the highest accuracies was 

achieved in AD diagnosis using machine learning models.  

However, relatively few machine learning models have performed multiclass diagnosis in 

neurological disorders. A multiclass approach to classifying multiple neurodegenerative diseases was 

studied in very few papers, notably in [2], where AD, PD, and CN were classified with an accuracy of 



90% for AD, 90% for control from ADNI, 89% for control from PPMI, and 90% for PD using transfer 

learning on the VGG19 model which performed the best out of the ResNet 50, Inception Net, and VGG16 

model which were also tested in the paper and in another article by Tong et al. [3], where a five-class 

model was proposed that achieved a 75.2% that classified AD and other dementia-like diseases using the 

RUSBoost algorithm. Even in these studies, the model was limited to classifying only neurodegenerative 

diseases in lesser than five classes. Therefore, this study aims to solve the problem of multiclass diagnosis 

and treatment of neurological disorders. 

1.3 Research Problem 

Current diagnosis of neurodegenerative diseases and cancerous brain tumors can be inaccurate, 

costly, time-inefficient, and invasive creating risk for patients. Moreover, only part of the patient data is 

used for diagnosis. To offer a more robust diagnosis, blood-based biomarkers and MRI imaging data offer 

a better diagnosis. Furthermore, diagnosing these medical conditions often have limited integration of 

utilizing patient data to offer the best treatment approaches. Moreover, current therapeutic treatments for 

diseases involve billions of dollars, a 90% failure rate, and 12-years to develop a successfully follow the 

drug discovery process. In addition, current treatment procedures fail to accurately predict the highest 

survival percentages for patients to suggest the best treatment plans. Patient data is also not used 

accurately to help integrate multiple components like a patient’s genomic profile to find overexpressed 

genes and their corresponding miRNA regulatory pathways for faster drug discovery. 

1.4 Proposed Solution 

 This study proposes a novel deep learning architecture, NeuroXNet, which performs multiclass 

diagnosis of AD, PD, MCI, glioma, meningioma, pituitary, and normal patients. NeuroXNet is the first 

model in published literature that diagnoses neurological diseases in seven classes using MRI images. 

This is also the first model in published literature which creates a novel architecture to classify 

neurodegenerative disorders instead of relying on previously built models like ResNet50 or VGG16. 



Furthermore, novel blood-based biomarkers and their corresponding miRNA regulatory pathways are 

identified with potential to aid in clinical drug discovery research through target identification, having the 

potential to drastically fasten the drug discovery process and reduce costs for in vitro experiments. In 

addition, NeuroXNet generates recommendations for treatment based on classification of disease from its 

convolutional neural network (CNN) model combined with the patient’s genomic data and clinical data. 

These recommendations include treatment plans for surgery, radiation, or drug therapy. Moreover, this 

model is the first that combines diagnosis with treatment plans and a miRNA drug discovery pipeline for 

neurological disorders. Therefore, this model has great potential to be used in neurological medicine and 

provide a low-cost, efficient, and quick solution to patients worldwide. 

II. Materials and Methods 

2.1 Data Acquisition and Description for MRI Classifier 

Data of AD and MCI patients used in the paper was obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI), a free open source database (adni.loni.usc.edu), and data for the PD and 

normal patients was obtained from the Parkinson’s Progression Markers Initiative (PPMI) database 

(ppmi-info.org). Data for MRI of patients with glioma, meningioma, and pituitary tumors were acquired 

from Kaggle’s Brain Tumor Dataset [4]. For each of the seven AD, PD, MCI, Pituitary Tumor, Glioma 

Tumor, Meningioma Tumors, and Normal Patients, 1000 Brain MRI images were collected NIFTI format 

from the respective databases for a total of 7000 images. All the MRIs were T1-weighted and equally 

distributed to reduce model bias. These images were then converted to png format using the MRIcro tool. 

The images were split into training/validation/test folders using a 70%/30%/10% ratio. Table 1 shows the 

number of patient MRIs that were split into Training, Validation, and Test sets for each disease class. 



 

Table 1: Number of Patients per Data Set Folder 

The demographic data including age and gender for the neurodegenerative classes is shown below in 

Table 2: 

 

Table 2: Demographic Data for Neurodegenerative Diseases 

2.2 Data Preprocessing for Diagnosis 

After being split into their respective folder, each MRI image was normalized by rescaling the 

size of each image. Then, data augmentation was applied, including shearing, zooming, and flipping the 

data to decrease overfitting and improve the model's overall accuracy. The data was preprocessed to 

reduce the amount of data bias the model gains and helps make the model regularize to fit all ranges of 

MRI images. 

2.3 Identification of Novel Biomarkers 

Identifying biomarkers from blood, tissue, or another type of body cell for early detection of 

neurological diseases was one of the main focuses of this study. Blood biomarkers are analyzed with 

microarrays to gather data on gene expression for thousands of genes and subsequently used as a non-

Number of Subjects Number of Male Subjects Number of Female Subjects Average Age Range of Age

Alzheimer's Disease 1000 307 693 77.73±5.51 [72,87]

Parkinson's Disease 1000 617 383 60.39±8.43 [39,76]

Mild Cognitive Impairment 1000 462 538 75.74±8.98 [58,92]

Normal Control 1000 318 682 60.93±10.89 [31,81]

Table 2: Demographic Data of Neurodegenerative Disease Classes

Note: Average Age represents age±standard deviation and range of age represents [min,max].



invasive neurological test for diagnosis and research in finding new treatments. This study utilized 

genomic datasets from Gene Expression Omnibus. The data used in this study consisted of the series 

GSE74385 for meningioma tumor classification, GSE31095 for glioma tumors, GSE4488 for pituitary 

tumors, GSE63063 for MCI classification, GSE6613 PD classification, and GSE4226 for AD 

classification. Each gene expression study was used to find differentially expressed genes that would 

serve as blood biomarkers for diagnosing the specific neurological disorder. The NeuroXNet model used 

to classify patients by genomic data. 

           Using GEO2R, the patients were split into two groups for each series number, with one group 

consisting of the specific disease class and the other group with normal patients. Then, all differentially 

expressed genes with a p-value of less than 0.05 were used to generate a protein interaction network using 

the STRING tool. The protein interaction network was then used to identify hub genes with a high 

number of nodes using the Cytoscape tool. The hub genes are the differentially expressed genes that are 

over-expressed in patients with certain neurological conditions and are potential biomarkers for the 

disease. These hub genes were sorted by degree (number of nodes connected to) and used for gene 

ontology analysis using the PANTHER tool, which gave the false positive rate, fold enrichment, and p-

values for the specific genes present in biological, molecular, and cellular processes.  

The fold change represents the ratio of the average gene expression in the experimental group vs. the 

control group. This study focused on the over-expressed genes with fold change values greater than 1. 



 

Figure 1: NeuroXNet Model Workflow Analysis 

III. Results and Analysis 

3.1 Results for Identification of Blood Biomarkers 

Five hub genes were found for PD patients with a degree of 7. These genes were CENPF, DLGAP5, 

KLAA0101, TOP2A, and BUB1B. CENPF or Centromere Protein F is related to the centromere-

kinetochore complex and is responsible for chromosome separation during mitosis. The gene is also 

differentially expressed in cancer patients. DLG Associated Protein 5 codes for protein and is also found 

in cancerous patients. DNA Topoisomerase II Alpha (TOP2A) is crucial in the transcription process, 

helping create enzymes for chromosome segregation and condensation. This gene also counters drug 

resistance in patients with ataxia-telangiectasia [5]. 



For the biological function of neuron-glial cell signaling, a fold enrichment value of 58.29 was 

observed in 3 over-expressed PD genes. In molecular functions, the alpha1-adrenergic receptor activity 

process had three genes with a fold enrichment of 97.15. This shows that the over-expressed genes are 

essential biomarkers of PD in patients, and the extremely low false discovery rate supports that this 

observance is not by random chance. 

 

Figure 2: Protein Interaction Network of Biomarkers for AD 

For AD blood biomarkers, nine hub genes were over-expressed in the patients with the condition. 

RPL24 had a degree of 18, and the other eight genes each had a degree of 8, showing that these genes 

interacted closely and were signals of AD in patients. Ribosomal Protein L24 (RPL24) codes for protein 

synthesis and is part of the ribosomal proteins family of L24E. The RPL series and RPS series of genes 

which are the hub genes, are associated with certain cancers. The model shows that the ubiquitin ligase 

inhibitor activity and ubiquitin-protein transferase inhibitor activity have extremely large fold 

enrichments for molecular processes. These hub genes are efficient signals for AD diagnosis and can be 

studied for possible treatment of the disease. 

           For MCI patients, three hub genes were found, namely: FYN, SNRNP70, and CHD4. FYN is 

responsible for cell growth control in the tyrosine kinase protein family. SNRNP70 is responsible for 

Gene Degree Clustering Coefficient

RPL24 18 0.830065359

RPL31 17 0.911764706

RPL19 17 0.911764706

RPL5 17 0.904411765

RPS16 17 0.882352941

RPL6 17 0.911764706

RPS6 17 0.904411765

RPL36A 17 0.911764706

RPL37A 17 0.904411765



many types of diseases involving body tissue. These hub genes are essential in classifying MCI through 

blood samples and can serve as a way for neurologists to differentiate between MCI and AD patients 

because of the different hub genes for each disease. 

Five hub genes were found for patients with glioma tumors, and two biological processes of calcium 

ion export and regulation of postsynaptic cytosolic calcium ion concentration had high enrichment values 

of 38.5 and 35, respectively. PRKCA is associated with other types of cancer. 

For patients with pituitary tumors, seven hub genes were found by the model. MPDZ proteins are 

responsible for HTR2C genes clot in the cell. Together, these hub genes can be used as non-invasive 

approaches for helping identify pituitary tumors in patients. 

 

 

Figure 3: Protein Interaction Network for Meningioma Over Expressed Genes 

 One of the most significant results of the NeuroXNet model was the biomarkers it found for 

meningioma tumors. The model found 37 hub genes that were overly expressed in patients with 

meningioma tumors, and all had degrees greater than 64. The model shows that the biological process of 

DNA replication preinitiation complex assembly has a high enrichment value of 78.31 among the 

associated hub genes. The cellular function of the cyclin B1-CDK1 complex also has a high enrichment 

value of 78.31. Some of the hub genes with the highest interactions included CDK1, CCNA2, AURKA, 

and BUB1 (also associated with PD patients). Cyclin-Dependent Kinase 1 (CDK1) has been associated 



with breast cancer and is involved in M-phase promoting factors. Cyclin A2 (CCNA2) is also in the same 

family of genes and is responsible for protein transition. The gene is also found in patients with other 

types of cancer. 

 

Figure 4: Mean Difference Plot for Meningioma Related Genes 

3.2 NeuroXNet Classification Results 

For my sequential model, NeuroXNet, the model starts with a convolutional layer with 32 filters, a 

stride of 2, the same padding, and a kernel size of 3. The layer takes in the input mages using an 

activation ReLU function. Next, the images are passed into a max-pooling layer with a pool size of 2 and 

a stride of 2. Then, the images pass through another convolutional layer with filter size 128. Next, the 

images pass into another max-pooling layer followed by a convolutional layer with filter size 128. Next, 

the images are passed into a batch normalization layer with a momentum of 0.8. Finally, the images are 

flattened through a flatten layer and are passed into the dense layer, which uses the softmax function to 

classify and diagnose the MRI images. 

The model had an input of 6300 images from the Training and Validation folders, which is used to 

train itself. The model was run for 30 epochs and had a training accuracy of 99.79% with a loss of 0.0067 

and a validation accuracy of 100% with a 0.0010 loss at the end of the 30 epochs. The training and 

validation accuracy and loss graphs over the epochs are shown below:  



 

Figure 5: Training and Validation Model Accuracy and Loss 

Then, the model ran the images on the test set comprising 700 images evenly split into seven classes. 

The confusion matrix for the testing data is shown below: 

 

Figure 6: Model Confusion Matrix and Heatmap 

The confusion matrix shows the number of images in each class and their respective predicted values 

compared to the actual values from the test set. The confusion matrix also helps visualize the model’s 

performance on the test set through the heatmap colors. The diagonal values of 92, 97, 92, 97, 96, 95, and 

94 represent the number of images that NeuroXNet correctly classified in each of the seven classes of 

AD, MCI, PD, Glioma, Meningioma, Pituitary, and Normal respectively. Out of the 700 images in the test 

set, NeuroXNet correctly classified 663 pictures, and the rest of the 37 were incorrectly classified. The 



few incorrect classifications could be caused by the model perceiving features of certain patient MRIs to 

be similar to multiple diseases making the model rely on a close probability value from the softmax 

function to diagnose the particular incorrect disease over the correct class. Otherwise, the model 

performed well, achieving an accuracy of 94.71% for multiclass diagnosis. 

Other than the confusion matrix, another way to help see the model's overall performance on the test 

set is the classification report which gives the precision, recall, f1-score, and support for each of the 

classes with macro averaging as well as the weighted averaging. The classification report for the model is 

shown below: 

  

Table 3&4: Disease Classification Report 

Below are the formulas used in the Classification Report: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2) 

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4) 

The precision, recall, and f1-score values for the model are 92%, 97%, 92%, 97%, 96%, 95%, and 

94% for AD, MCI, PD, Glioma, Meningioma, Pituitary, and Normal respectively. The accuracy, macro 

Precision Recall F1-score Support

AD 0.92 0.92 0.92 100

MCI 0.97 0.97 0.97 100

PD 0.92 0.92 0.92 100

Glioma 0.97 0.97 0.97 100

Meningioma 0.96 0.96 0.96 100

Pituitary 0.95 0.95 0.95 100

Normal 0.94 0.94 0.94 100

Table 3: Classification Report for Diseases

Precision Recall F1-Score Support

Accuracy 0.95 700

Macro Average 0.95 0.95 0.95 700

Weighted Average 0.95 0.95 0.95 700

Table 4: Classification Report for Whole Model



average, and weighted average of all the different methods of calculating performance are 95%, with a 

support of 700.  

In addition, the Cohen’s Kappa score for the model was calculated to be 0.9383 with the equation for 

the score shown below (p0 represents relating observed agreement and pe represents the probability of 

chance agreement): 

𝐾𝑎𝑝𝑝𝑎 𝑆𝑐𝑜𝑟𝑒 = 1 −
1 − 𝑝0

1 − 𝑝𝑒

(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5) 

The Matthews correlation coefficient was calculated to be 0.9383 with the equation for the coefficient 

calculation shown below: 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6) 

3.3 Identification of Novel miRNA Therapeutics 

 The blood-based biomarkers identified from the previous section for each disease was utilized 

and the hub genes were shortlisted. These hub genes were fed into the miRDB database to find target 

predictions for the corresponding miRNAs. The miRNAs which were identified had target prediction 

scores of greater than 60. These miRNA targets were used to create miRNA regulatory pathways using 

Cytoscape. The miRNAs identified with the greatest target prediction score were miR-664b for glioma 

tumors, miR-548t for meningioma tumors, miR-133a for pituitary tumors, miR-338 for PD, miR-23a for 

AD, and miR-548t for MCI. Thus, the identified miRNAs act as targets for drug inhibition and better 

treatment of these diseases. To treat the disease, the doctors would have to inject the corresponding anti 

miRNA oligonucleotides to downregulate the overexpressed miRNA and overexpressed genes which are 

the underlying mechanisms causing the particular disease. 

 The data tables and miRNA regulatory networks generated during the research for each of the six 

neurological conditions are shown below:  



 

Figure 7: New miRNA Therapeutics Discovered for Each Class of Disease 

IV. Discussion and Conclusions 

This paper helped describe the layers and characteristics of the NeuroXNet model, which achieved a 

test accuracy of 94.71%. This model is the first CNN model which approaches the diagnosis of 

neurodegenerative diseases, primarily Alzheimer’s disease, Parkinson’s disease, and Mild Cognitive 

Impairment and brain tumors (glioma, meningioma, and pituitary) through a novel deep learning 

architecture (NeuroXNet). The model helps find new blood biomarkers for the six diseases, through 

which a robust miRNA drug discovery pipeline is also developed. Furthermore, NeuroXNet is the first to 

integrate a treatment component into the model and uses genomic data with the MRI images to diagnose 

patients. Through this model, doctors and radiologists can diagnose neurological diseases at an earlier 

stage and use the diagnosis in treating patients with the proper medications and treatment procedures, 

helping prevent the disease from progressing onto a deadlier stage that could affect the patient’s health 

drastically. Consequently, this model has great potential to be used clinically and improve the lives of 

numerous patients. Many results including the machine learning image classifier and novel miRNA 

therapeutics discovered have never been reported or published in scientific literature before. Through this 

paper, a new model is proposed and seen to attain a high accuracy that has many practical applications to 



radiology, neuroscience, and medicine, helping make a breakthrough in the diagnosis and treatment of 

neurological diseases using computational and biological approaches. 
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