
Personal Section: 

In the summer of 2021, I got an email that would change my life. I’d been attending the 

UCLA math circle for almost a decade at that point, and I had a good relationship with the head 

of the program, Prof. Oleg Gleizer. But I was surprised when he sent me an email saying, “We 

may have a research opportunity at USC this Summer.” Prof. Salman Avestimehr of USC 

(University of Southern California) was doing research into distributed machine learning 

techniques, and he had reached out to Prof. Gleizer looking for mathematically advanced high 

school students for an eight-week apprenticeship. 

At the time I knew very little about the inner workings of artificial intelligence, and nothing 

about any of the subjects Prof. Avestimehr was researching. But I’d been interested in AI for a 

long while and loved seeing all the new technologies being created. This was when GPT-3 had 

just been released, and ChatGPT was more than a year away, so the available software was very 

basic by today’s standards: one AI could write classical music, another could replace the 

background of a video, another could generate realistic faces. So, when Prof. Avestimehr reassured 

me that he would teach me all the background knowledge I needed to know, I couldn’t pass up on 

the opportunity to become a part of the field I’d been observing for years, and I said yes to what I 

thought would be a two-month project. 

My first few weeks of the program consisted mostly of lectures and exercises to catch me 

up to speed. Every Monday, Wednesday, and Friday I watched a data-science lecture that 

explained general data-science concepts, from basic linear algebra to statistics. Every Thursday I 

worked with one of the post-docs working in the lab, Dr. Ramy Ali, to understand their existing 

research, working step by step from the smallest discoveries to the biggest. Finally, after almost a 

month, I understood what had been discovered, and what was still missing. 



The technique behind most modern Artificial Intelligence systems is called “Machine 

Learning,” which is an attempt to approximate the way humans learn. In simplest form, machine 

learning repeatedly tests and adjusts a program’s parameters to perform better and better on a 

dataset of examples until it can solve a desired type of problem, often performing these adjustments 

millions or billions of times. Machine learning begins with a template program, which is just a 

complex program with a lot of parameters. Most of these template programs use a “neural network,” 

which involves processing inputs using simulated neurons controlling other neurons via 

controllable parameters. What’s important is that the program, which we call a “model,” has a lot 

of parameters (sometimes billions of parameters). We “train” this model by repeatedly testing its 

performance on a set of example problems, measuring each parameter’s effect on the accuracy of 

the model, and adjusting each parameter accordingly. We repeat this process over and over again 

until the model can solve the assigned task. 

The biggest problem with this technique is getting enough examples. Large machine 

learning models trained on complex tasks can require millions, billions, or trillions of examples to 

train on, and obtaining those examples often involves use of a massive amount of detailed 

personally identifiable information which many would argue is a serious violation of people’s 

privacy. That’s where my research came in. The lab had been working on improving a technique 

called “Federated Learning,” which has the potential to keep all the training data hidden and private 

even while using it to train a machine learning model. I’d never heard of Federated Learning before, 

and it seemed impossible. How could a computer learn the patterns in a set of data without seeing 

the data? But it’s surprisingly simple. 

Federated learning works by dividing the training process among many devices. Instead of 

offering their data, users of a machine learning service offer their computational power. Every 



training round, each user receives a copy of the current model. They then train this copy on their 

device, using their own data. Finally, these individually trained models are aggregated together on 

the central server, using an encrypted process called “secure aggregation” so that even the 

individually trained models are hidden from everyone except the owner of their data. 

While that idea is key to a new way of approaching privacy, it was not yet completely 

secure. Before my research had begun, my mentors discovered a way to reverse engineer user data 

just by examining the resulting, aggregated models. Methods for recovering user data by 

examining a trained model were already well known, but the secure aggregation should have 

ensured that, at the very least, no data could be paired with any person. But Prof. Avestimehr’s 

team found that they could approximate individual models, and thus, individual data, by exploiting 

the fact that not all users will be available for all training rounds. Users will randomly drop out of 

training because they powered off their device, uninstalled the application, or any other reason. By 

comparing the rounds when a user is present with rounds when that user is absent and using some 

linear algebra to account for the change in other users, the lab was able to discover what effect 

each user had on the overall model, and thus approximate the data they contributed to it. 

My mentors had also created a solution: group the users into batches, and only use the users 

in a batch if every user in it is available. But that solution has a severe problem: there often aren’t 

enough batches available using this method, so training must pause until more people log on. My 

mentors hoped I could find a better, more efficient method for protecting privacy while using 

federated learning. 

That was a daunting task. A group of experts with PhDs had failed, and they thought I, a 

high-schooler with no prior experience in theoretical computer science, might have a chance. But, 

after I had worked through my mentors’ existing research, I began where any good mathematician 



begins. I played around with an example. My mentors had described their Batch Partitioning 

method using a type of matrix (a grid of numbers), so I began by examining a specific example of 

that matrix using only six users at the lowest possible level of privacy. I made changes to see what 

those changes would break. I looked for patterns and tried to extend those patterns. I poked and I 

prodded until, finally, I found something. I discovered, for the specific example I was looking at, 

I could double the number of rows in the matrix (essentially doubling the efficiency of the 

algorithm) by batching the users in a second way, and it still maintained the privacy of the users. 

I had found somewhere to start. 

This initial insight happened relatively quickly. But turning that insight into a solution 

required two major steps: first, I had to figure out how to turn my singular example into a general 

formula that would work for any number of users, and any desired level of privacy. And second, I 

had to prove my formula actually satisfies the level of privacy I claimed it does. 

Like any big problem, in mathematics or otherwise, the way to tackle both these tasks was 

to take them step by step; slowly building up from my singular example to the full solution. My 

initial example used the lowest possible level of privacy, so I began by focusing solely on that 

level of privacy. The first step, extending the example into a general formula, wasn’t too difficult. 

Because the level of privacy was the same, I just had to do the same thing with more users. That 

just left the second task: prove my extension would still protect the privacy of individual users. 

Proving something is possible is very easy; just do it. Proving something is impossible, 

however, is much trickier. In order to prove the privacy of users with my technique, I had to show 

that it’s impossible to combine aggregated models to isolate a single user. Again, I searched for 

patterns to use, symmetries I could follow, and tried different operations until something worked. 

In this case, I got to use one of my favorite proof techniques: proof by contradiction. I showed that 



if you did isolate down to one user, eliminating the influence of everything else, that user’s model 

must be multiplied by a factor of 0. In other words, you didn’t isolate down to one user, you isolated 

down to no users. 

At this point, the eight-week program was mostly up, and there didn’t seem to be any more 

progress I could make in the time I had left. I made a presentation, showed my mentors my work, 

and was ready to be done. I had discovered an improved technique in a specific case, and I was 

sure my mentors could expand from there. But they had other ideas. My mentors said, if I continued 

working with them and figured out how to extend my technique to any desired level of privacy, 

they’d help me write and publish my work. This was a very exciting offer. I could be an author of 

published research before I even reached college. Besides, solving the simple case had gone 

relatively smoothly. How bad could the whole problem really be? 

Thus began the worst months of my life. Like before, the first task of turning the example 

into a general formula wasn’t too difficult. I had to go through a few potential algorithms, each of 

which seemed to work at first, but later experimentation proved ineffective at preventing isolation 

of a single user. However, I eventually found an extension of my prior pattern which I couldn’t 

break. 

So, I set on the challenging task of proving I couldn’t break it. And what a challenging task 

it was. The technique I used in my prior proof didn’t work here. Experimentation didn’t lead 

anywhere obvious. None of the theorems I knew seemed to help. My research into relevant (and 

less relevant) areas of mathematics turned up nothing applicable. Every day I’d find some new 

way to manipulate the equation, feel like I was finally making progress, and then discover I’d hit 

another dead end. I felt like I was repeatedly crashing a car, backing up, and slamming into the 

same wall again. And throughout those months, I just got more and more depressed. I wanted to 



quit, but I felt like I was perpetually almost done, just one breakthrough away. So I kept trying and 

kept trying, as I ran out of things to try. 

And then, while lying on the sofa after a few particularly unproductive hours of work, an 

idea came into my head. Could it really be that simple? I ran back to my desk, and within an hour 

I had the solution. Remember when I said turning the example into a general algorithm wasn’t too 

difficult? It turns out I was wrong, because the general algorithm I thought I found was the wrong 

one. I still, to this day, have no idea whether that algorithm would work or not, but it doesn’t matter 

because I found a significantly simpler, and much better, method. My new algorithm, which I 

called Double Partitioning, worked by partitioning the users in two different ways, and it also 

doubled the number of rows. Once the idea for this new algorithm popped into my head, proving 

it worked was almost trivial: it was in fact the exact same proof as for the simpler case I’d done 

all the way back at the beginning. I had solved it, and all I had to do was look from a new 

perspective. 

My work wasn’t done, of course. Being a scientist doesn’t just require doing science, you 

also have to explain that science to others. I had to take my proof, and all the work I’d done, and 

figure out how to write it down in a way that made sense. My mentors were so helpful in this phase; 

they understood the conventions of academic journals and academic articles, so they ensured 

everything I wrote was clear and understandable by other computer scientists. After another month 

or so of work writing and rewriting and simplifying my proofs, I had written my first ever academic 

paper, and I was ready to submit it to journals. 

Unfortunately, our first submission to a journal was rejected during peer review. They felt 

that my improvement was not significant enough to be worth publishing, as the measured 

improvement on performance time was somewhat small. In addition, they said our standard of 



“privacy” was too weak; our paper assumed that a group of users was private if it was impossible 

to eliminate the influence of all other users, but peer review pointed out that reducing the influence 

of other users to some really small factor, such as one in one million, would still count as “private.” 

While our second submission to a different publication was accepted, those criticisms stuck in my 

head. Could I make the algorithm even better? 

So, I got on a zoom call with one of my mentors, and we spent several hours (split over 

around a week) figuring out how to improve our definition of privacy without being too restrictive. 

My experimentation suggested that our existing algorithm followed a stronger form of privacy 

than I’d proven, but I needed to figure out how to articulate and prove that form. I’d pose a 

suggestion, my mentor would find an issue and suggest a solution, and I’d alter that solution to be 

better. After a few iterations, we had a definition that we felt satisfactorily represented a common 

understanding of “privacy,” without being too restrictive. Proving Double Partitioning also 

satisfied this new definition of privacy was a breeze. 

We also wanted to improve the performance even more, or at least try. My mentor 

suggested that I try to calculate exactly how well the current method, Double Partitioning, 

performed, instead of just measuring it on examples. Calculating this performance ended up being 

very difficult. I particularly struggled with one pattern; while every row in my matrix satisfied the 

pattern, there were gaps which, if filled, would make the necessary calculations much simpler. 

And then, I thought, why not fill those gaps? I examined my proof of Double Partitioning’s 

privacy, and no step required those gaps to be present. So, I removed them, and created Mixed 

Partitioning, my final algorithm. By filling the gaps in the pattern, I had improved the performance 

even more, and this time I could say exactly how much more of an improvement it was. 



This final iteration of my algorithm is what got me selected as a finalist for the Regeneron 

STS. As you can see, getting there was a long journey full of wrong turns and dead ends. I learned 

so much about the research process, and I’m so thankful to my mentors at USC for giving me this 

opportunity and helping me through every setback.  

So, if you ever have the chance to do mathematical research, learn from my mistakes, and 

take my advice. Start small and build up to the full problem. If you’re stuck, just play around 

with what you know, looking for patterns to extend or break. If you’re trying to improve one 

aspect of something, understand exactly why that aspect is at the level it is. And, most 

importantly, never assume you’re on the correct path. Even when something seems to work, keep 

trying other ideas. Even after you’re done and your work was published, there might be a way to 

make it better. 

One last thing, to cap this story off. As I was going back through my old emails and 

notes, I discovered something funny. That improved method, Mixed Partitioning? I actually 

discovered it almost right away, and then forgot about it. In my week 3 presentation, when I was 

showing my example solution for six users, I also showed another example solution, which 

coincidentally is the mixed partitioning matrix for six users. I promptly forgot about that, 

because it was much less obvious how to extend that pattern, but it was there. So, if you’re stuck, 

read through your old notes. Maybe you’ve already hit on something and forgotten. 


