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Abstract 

The introduction of computational techniques to analyze chemical data has given rise to the 

analytical study of biological systems, known as “bioinformatics”. One facet of bioinformatics is 

using machine learning (ML) technology to detect multivariable trends in various cases. Among 

the most pressing cases is predicting blood-brain barrier (BBB) permeability. The development 

of new drugs to treat central nervous system disorders presents unique challenges due to poor 

penetration efficacy across the blood-brain barrier. This research aims to mitigate this problem 

through an ML model that analyzes chemical features and accounts for patient variance. To do 

so: (i) An overview into the relevant biological systems and processes as well as the use case is 

presented. (ii) Second, an in-depth literature review of existing computational techniques for 

detecting BBB permeability was undertaken. From there, inflammation is identified as a variable 

characteristic unexplored across current techniques and an initial solution is proposed. (iii) 

Lastly, a two-part in silico model to quantify the likelihood of permeability of drugs with defined 

features across an inflamed BBB through passive diffusion is developed, tested, and discussed. 

Testing and validation with the dataset determined the predictive logBB model’s mean squared 

error to be ~ 0.112 units. The currently used neuroinflammation model’s mean squared error was 

approximately 0.3 units. The developed model outperforms the currently used model to predict 

permeability into the BBB.  
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Introduction 

 

Background 

Drug development is a lengthy, complex, and costly process, accompanied by a high degree of 

risk surrounding eventual success. The development of a single prescription medicine that is 

approved for marketing is estimated to cost drugmakers > $2 billion. The challenge is amplified 

in the case of the development of central nervous system (CNS) drugs. CNS drugs typically take 

20% longer to develop and 38% longer to get FDA approval than non-CNS drugs, with a failure 

rate of 85% (DiMasi, 2016). The larger rejection rate, stems in part, due to the poor penetration 

ability across the blood-brain barrier (BBB), hence limiting the growth of the neuro-therapeutics 

field (Liebner et. al., 2018; Pardridge, 2005; Muehlbacher et. al., 2011). The BBB comprises 

epithelial-like tight junctions that limit diffusion from the blood to the extracellular fluid of the 

CNS to molecules with a molecular mass < 400 Da and a hydrogen bond count < 8 bonds; the 

tight junctions act as a physical and biochemical barrier between the CNS and the bloodstream, 

maintaining the homeostasis of the CNS (Lochhead et. al., 2020; Daneman & Prat, 2015). While 

the BBB shields the brain from infectious and toxic substances, it also restricts the ability of 

drugs to target specific locations in the brain to treat neurological disorders.  

 

A thorough understanding of the BBB is necessary in both the academic and industrial fields due 

to its importance for treating longstanding untractable diseases such as Alzheimer’s and 

Parkinson’s (Reichel, 2006). The highly selective nature of the BBB deters effort to develop 

solutions for neurological diseases and disorders; therefore, the neurotherapeutics front faces a 

dilemma in that there is a small number of molecules for the majority of CNS disorders. Without 

a method to gauge permeability before approaching clinical trials, decades could lapse before the 

successful treatment of neurological diseases, leading many to live with brain dysfunction.  

 

Goals 

The goal of this project was to create an applicable machine learning model (ML) to predict the 

permeation value of chemical compounds across the blood-brain barrier and serve as a 

preliminary step for drug discovery. This includes the design and development of an in silico 
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model to input a compound’s molecular features to calculate logBB values, which is an 

established metric of permeability across the blood-brain barrier. The preceding step would 

apply for healthy barriers. The applicability of the proposed model was derived from the 

neuroinflammation sub-model, using an unprecedented component that factored a patient’s C-

reactive protein (CRP) level and adjusted the predicted logBB value for neuroinflammation. 

Such a model can predict the permeability of the BBB under diseased and/or inflamed 

conditions, which is more likely to be encountered in neurological diseases. Machine learning 

models can thus be applied in preclinical trials to discard drugs that cannot permeate the BBB 

before spending money and time in clinical trials.  

 

Literature Review 

The BBB holds the most prominent effects in determining the pharmacokinetic properties of 

bioactive drugs in the brain. It is composed of endothelial cells, pericytes, and astrocytes in direct 

contact with brain tissue and differs from the typical blood vessel because the endothelial cells 

form tight junctions, heightening the selectivity (Abbott et. al., 2010; Bechmann et. al., 2007). 

This allows it to restrict the time course of a compound’s absorption into the extracellular brain 

space. The measure of a molecule’s permeability is governed by logBB value, using the formula:  

 

𝑙𝑜𝑔𝐵𝐵 =  𝑙𝑜𝑔(
𝐶𝑏𝑟𝑎𝑖𝑛

𝐶𝑏𝑙𝑜𝑜𝑑
) Eq. 1 

 

Certain physicochemical descriptors of drug and drug-like compounds that are indicative of 

molecule binding capacity have heavy influence in determining whether a molecule can diffuse, 

actively or passively, over the tight junctions of the BBB (Geldenhuys et. al., 2015). These drug 

properties cannot be linked, however, to BBB diffusion without intricate nonlinear computation 

methods because there are no present equations that can identify this correlation. Fortunately, 

computational techniques such as deep learning technology can provide this multidimensional 

simulation (Gerebtzoff & Seelig, 2006).  

 

The literature review was categorized into three types of models. First, standard computational 

approaches without artificial intelligence (AI) techniques were explored to determine the need 

for machine learning implementation. Second, ML models that focused on structural 
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quantification as input data were analyzed. Third, similar ML models that either solely focused 

on chemical features or had a joint focus that prioritized chemical features were analyzed.  

 

Conflicting literature surrounding the merit of ML approaches compared to traditional regression 

for analysis of clinical data has encouraged the research of both techniques for the prediction of 

BBB permeability (Christodoulou et. al., 2019; Huang et. al., 2020). A prominent feature of 

traditional analysis is taking 3D structures of molecules and quantifying the data into 1D 

descriptors, and methods such as VolSurf ® (Molecular discovery, UK) have been utilized for 

this purpose. Results in the form of correct logBB classifications have had a wide range of 

accuracy, from 79% to 90%, supposedly credited to variance in technique (Crivori et. al., 2000; 

Ooms et. al., 2002). Other approaches have varied both the input type and method of output. One 

study calculated logPS values to represent penetration through the BBB and used the values as a 

dataset to make predictions based on a drug’s logD value, polar surface area, and van der Waals 

surface area of basic atoms. More unique attempts as such don't do classification accuracy but 

instead R2 values yet have had scores tending to be less than 0.75 (Liu et. al., 2004; Nicolazzo et. 

al, 2006; Pucas et. al., 2019). 

 

Machine learning is a subfield of AI that relies on a computer’s ability to learn patterns on its 

own. Its application is explored in three methods: supervised, unsupervised, and reinforcement 

learning (Réda & Delhaye-duriez, 2020). In the field of drug discovery, supervised learning has 

proved to be the most common technique due to the need to verify information and inability to 

cluster data of >10 variables. Similar to standard computation techniques, machine learning 

approaches have also explored structural descriptors such as cross-sectional area to predict BBB 

permeability; such models have achieved accuracies as high as 88% but necessitate a larger 

dataset relative to standard approaches (Plisson & Piggott, 2019). A more recent approach 

quantified the structure through its molecular fingerprint and used that as its primary descriptor 

alongside supplementary chemical features. A molecular fingerprint converts a molecule’s 

structure into a bit string which encodes the structure as a descriptor (Muegge & Mukherjee, 

2015). This approach achieved an improved accuracy of 91.9%, boosting the reputability of ML 

approaches for classification of drug permeability through the BBB. 
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Furthermore, ML can also be leveraged for a much larger variable count that traditional 

regression techniques cannot handle. The ability to do so has led scientists to hand-select features 

believed to play a role in BBB permeability. One comprehensive model attempted logistic 

regression, linear discriminant analysis, k nearest neighbor, C4.5 decision tree, probabilistic 

neural network, and support vector machine techniques using their custom dataset but was 

unable to par computational techniques (Li et. al., 2005). Generating descriptors has become a 

common technique for these approaches, and programs such as CODES which organizes 

molecules from a topological point of view have been leveraged to do so (Dorronsoro et. al., 

2004). This has also given rise to the use of deep neural networks, a technical mimic of the 

human brain through the use of nodes, to discover underlying relations in drug data (Wang, 

2003; Alsenan et. al., 2020). Neural networks are a proven computing technology for identifying 

hidden patterns in raw data and generalizing nonlinear correlations to go beyond a given dataset 

(White, 1989). An important aspect of neural networks is the adaptable training mechanism. The 

shifting of weights for different types of data allows a model to account for incomplete datasets 

and varying importance in the molecules’ descriptors. This allocates room for model 

improvement without rewriting source code because inputting new, diverse data can be 

seamlessly integrated (Guo et. al., 2017). Perhaps one of the strongest models in this literature 

review came from a multi-core SVM method that used drug side effects and indications as inputs 

for the prediction. This allowed the model to account for non-passive diffusion and achieve an 

accuracy of 97% with the limitation of being unable to determine how the drug entered (Miao et. 

al., 2019). The latter is critical in the field of drug discovery as chemical descriptors such as 

molecule size can point to the inability to permeate to a specific cause, and this is necessary for 

creating permeable drugs. 

 

Despite accurate models having been developed to relate inputs such as structure or features to 

an output such as logBB, these forecasters are seldom employed because of assumptions of 

constants in the brain, limited validation, and in some cases, proprietary nature of the model 

(Broccatelli et. al., 2016).  

 

To counter this issue, this research explored the causes behind the variation of BBB permeability 

in patients with neurological disorders (Casella et. al., 2014; Johansson et. al., 2009). The most 
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influential variance discovered was inflammation. Measured through a patient’s acute phase CRP 

level, inflammation levels have been shown to have a direct correlation to BBB permeability by 

prompting leptin resistance across the BBB (Hsuchou et. al., 2008; Pan et. al., 2008). The protein 

is in the pentraxin family and produced primarily in the liver in response to cytokines 

interleukin-6 and interleukin-1β, both reactive to the inflammatory cycle and thus outlining the 

rationale behind using the CRP pathway for incorporation neuroinflammation (Dube et. al., 

2008; Chen et. al., 2006).  Wet lab research has determined a CRP threshold of alternance at 2.5 

μg/ml; if higher than this, BBB impairment will factor into expected logBB value of chemical 

compounds (Hsuchou et. al., 2012). The model incorporates the aforementioned threshold as a 

basis for whether an adjustment is needed to the logBB output. 

 

Methods 

 

Data Acquisition 

This project employed a custom-built, verified dataset of 281 molecules with varying 

permeability values. Names of molecular compounds and associated logBB values were pulled 

from a previous study that compiled data from over 100 source publications and verified each 

compound (Radchenko et. al., 2020). From here, the following 16 physicochemical descriptors 

for each molecule was extracted from the public PubChem database using Selenium tools ® 

(Thoughtworks Ltd., USA) and incorporated into the machine learning model: Molecular 

Weight, Mass, XLogP, Hydrogen Bond Acceptor Count, Hydrogen Bond Donor Count, 

Rotatable Bond Count, Monoisotopic Mass, Formal Charge, Topological Polar Surface Area, 

Heavy Atom Count, Isotope Atom Count, Atom Stereocenter Count, Bond Stereocenter Count, 

Covalently-Bonded Unit Count, Vapor Pressure, and Complexity. Molecules that had less than 

50% of data unattained from the PubChem database were removed from the final set, with 

remaining missing values undergoing data correction. 

 

Model Selection 

This work defined a two-step process to determine the permeability of a compound on a patient-

by-patient basis. 3D molecular modeling had been extensively researched over decades through 

deep learning techniques; therefore, a tabular data analysis approach was favored as it potentially 
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had unexplored avenues. With background from Alsenan et. al, a multi-layer perceptron 

regression (MPR) model was initially developed for the predictive logBB model. The MPR was 

proficient in determining patterns of high correlation. However, outlier accountancy was poor 

because the model was indeterminate for molecules that fell outside the concentrated features of 

the dataset. Repeated accuracy analysis failed to show improvement in accuracy in spite of 

changing hyperparameters; this was because the model was unable to learn the patterns from the 

least significant features, resulting in a mean absolute error of 0.179 and a mean squared error of 

0.453. Since the goal of this project was to predict permeability of compounds that have not yet 

been synthesized or used, this posed a greater risk due to the inability to forecast the descriptors 

of future drugs in development. Ensemble modeling was employed next using the methodology 

from Plisson and Piggott. Bagging methods were used to train a series of weak models and 

combine them to create a stronger, more predictive model. Boosting methods were also used to 

sequentially train weak models so that multiple techniques could be used, each building off the 

previous. The techniques used in both bagging and boosting were Linear Regression, Ridge 

Regression, Lasso Regression, Bayesian Regression, and SVM modeling was less than that of 

existing models, Regression. The issue with ensemble modeling was the accuracy (error level) 

computed was less than that of existing research, although still stronger than the MPR model.  
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Figure 1. Predictive logBB Model Network Architecture (Original Image) 

 

After experimenting with different model architectures and their performance, a decision was 

made to go with a fully connected neural network (FCNN). The FCNN, cited in this research as 

the predictive logBB model, takes in an assortment of preprocessed features. It is a neural 

network with an input layer of 16 nodes and an output layer with a single node depicting the 

logBB value. Between the input and the output layer there are 5 hidden layers with a node 

breakdown per layer of 64, 128, 256, 128, and 32 nodes, respectively, that are trained to learn the 

logBB value through multivariable analysis. This model was selected on two bases: it was able to 

learn the significance across the distribution, and it achieved an error level less than both models.  

 

The neuroinflammation model works in conjunction with the logBB Model if there is additional 

information about the C-Reactive Protein levels in a patient. CRP levels on the surface did not 
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suggest a direct correlation with the logBB values; however, the second and third-order feature 

derivatives were successfully forecasted to have significant correlations with the logBB values. 

Hence, the decision was made to use a quadratic polynomial regression model for determining 

the validity of that correlation.  

 

Solution 

 

Figure 2. Synchronous Model Architecture (Original Image) 

 

The software consists of three key components aside from data acquisition: preprocessing, the 

predictive logBB model and the neuroinflammation model. 

 

The input receiver takes in the raw input of the 16 aforementioned physicochemical descriptors 

and, if desired, a patient’s CRP level. Preprocessing is split into two consecutive steps: data 

correction and data normalization. To maximize compound inclusion in the model, missing 

features from the 16 descriptors were predicted using multiple quadratic polynomial regression 

models. Using an extended, manipulable equation generated with quadratic polynomial 

regression techniques, present features could be substituted in as constants to solve for missing 
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features. Yet since data correction was an educated prediction, the model associated lower 

weights with these values, so the neural network could include a variety of compounds without 

incorrect or exaggerated permeability output. The weights were determined based on the strength 

of the correlation between the missing feature and the features used for predicting it; a higher 

correlation indicated confidence in the prediction and therefore a higher weight. The strongest 

correlation was seen between formal charge and complexity and the weakest correlation was 

seen between heavy atom count and molecular weight. 

 

 

Figure 3. Feature Correlation Plot for Weightage Calculation (Original Image) 

 

The complete data undergoes normalization next. The distribution of the training set was 

evaluated to extract how to bring the mean to zero and the variance to one (univariance). This 

methodology to normalize is transposed with new drug compounds that enter the model. 

Following preprocessing, the data is forwarded to the predictive logBB model. It was trained 
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across the dataset derived from PubChem and its error was determined using mean squared error 

compared to the known logBB value. When the predicted logBB value is generated, this path is 

halted and the neuroinflammation channel initiates. The CRP value is brought to a threshold 

checkpoint. If the value is less than 0.0025 g/L, then the inflammation level is deemed 

insignificant and the original logBB value is the final output. If not, then inflammation can be 

attributed to a non-healthy BBB and thereby altered restrictiveness. To adjust the drug 

permeation value, the initial logBB value is sent into the neuroinflammation model, a machine 

learning quadratic polynomial regression model, along with the CRP level to produce a more 

accurate logBB value for the drug in trial. The final output layer is a continuous output that 

predicts the logBB value for the user, also geared to minimize overfitting. The two-channel 

system’s output is designed to represent the numerical permeation value through the BBB of a 

patient with an inflammation level relatively close to the CRP value.  

 

Training and Validation 

Small batch sizes were used to train the predictive logBB model and to ensure that the network 

was learning and not memorizing. Small batches also ensured that the network was more 

efficient and trained faster. Multiple batch sizes were experimented with to observe loss and 

error for each epoch, and the best one was highlighted. It was observed under a batch size of 32 

that accuracy increased linearly with each epoch. This consequently proved that the network was 

not overfitting with the given dataset, so applicability was less of a concern. The 

neuroinflammation model had a more unique process in both training and validation. Since no 

present research has been made in identifying an equation rather than a correlation, there was no 

data available to train an in silico model. To acquire data for training the regression model, a 

common CRP level distribution was pulled from prior research (Zhao et. al., 2010). From this, 

statistical simulations of logBB adjustments were made based on inputs of logBB and CRP 

levels using a hand-developed Monte Carlo simulation method. 250 compounds were simulated 

and trimmed down based on available logBB information to 128 compounds that were pooled 

into a dataset for training. The summary statistics for the simulation are as follows: average CRP 

level was 0.0055 g/L, the standard deviation was 0.0012, and the number of simulations was 129. 

Mean squared error was once again used to predict the efficiency of the neuroinflammation 

model and charts for both models are presented below.  
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Table 1. Sample Training and Test Data with logBB Outputs and Delta Values for 

Comparison 

Molecule Name Expected logBB Predicted logBB Delta Training or Test 

Cimetidine -1.42 -1.27 0.15 Training 

Zolantide 0.14 0.29 0.15 Training 

Carbamazepine 0 -0.198 0.198 Training 

Temelastine -1.88 0.35 0.35 Training 

Codeine 0.55 0.38 0.38 Training 

2-Methylheptane 0.86 0.72 0.14 Test 

2-Methyloctane 0.98 0.976 0.004 Test 

2-Methylnonane 1.05 1.27 0.22 Test 

3-Methylpentane 1.01 1.149 0.139 Test 

Cyclopropane 0.11 0.08 0.03 Test 

 

The average delta, absolute value difference between expected and predicted logBB value, for 

the sample training molecules was 0.2456 and for the sample test molecules was 0.1066.  

 

Results 

The predictive logBB model made 150 passes through the training set and updated the model 

every 32 sample predictions. Five-fold cross-validation was used to summarize the skill of a 

model and limit unforeseen bias in the dataset. The model error chart and associated 

hyperparameters are detailed below.  
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Figure 4. Predictive logBB Model Error. Part 1 of 2-Part Model (Original Image) 

 

Predictive logBB Model Hyperparameters: 

1. Number of Epochs: 150 

2. Batch Size: 32 

3. Fold Validation: Five-fold cross validation 

 

The neuroinflammation model countered the lack of defined equations relating CRP levels to 

logBB values by using machine learning estimators. 50 estimators, or equations, were used to 

take the CRP distribution and associated effect on the restrictiveness of the BBB to simulate drug 

permeation and predict logBB values. Using Sklearn’s Pipeline functionality, multiple regression 

models were added on a loop to pick the one that performed the best. Each of the 50 regression 

models was an estimator. Since there was no data to compare inflamed logBB values to, the error 

was based on a comparison to the same dataset employed in the first model. The purpose of this 

was to determine if the correlation can be quantified. 
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Figure 5. Neuroinflammation Model Error. Part 2 of 2-Part Model (Original Image) 

 

Neuroinflammation Model Hyperparameters: 

1. Number of Estimators: 50 

 

Our results show that the predictive logBB model achieved a mean squared error of 0.112 and 

the neuroinflammation model achieved a mean squared error of 0.3. The logBB model surpassed 

the vast majority of models in modern research, suggesting that the hand-selected dataset 

features were appropriate for predicting BBB permeability. The neuroinflammation model, 

without any prior baseline, has achieved an error comparable to most cited prediction models. 

This suggests that second and third-order derivative correlation of CRP levels to logBB values is 

mathematically present and quantifiable given a database for drug permeability through inflamed 

BBBs. 



 

 

 14 

 

Figure 6. Confusion Matrix for Predictive logBB Model (Original Image) 

 

The current model could not be assessed on accuracy because it was not classification-based. To 

gain further insight into the model’s efficacy, a research-backed logBB threshold of 0.3 units was 

used to categorize predicted values as permeable (>0.3 units) or impermeable (<=0.3 units). 

From here, the classification could be compared to the true permeation from the dataset. The 

confusion matrix demonstrates a strong ability to determine if a drug compound can permeate 

across the BBB. The overarching accuracy of the test set was 94.4% For impermeable 

compounds, the precision and recall were 95.7% and 93.8%, respectively. For permeable 

compounds, the precision and recall were 93.0% and 95.2%, respectively. The minimal false 

positives and false negatives further demonstrates consistency across the range of potential 

logBB values. 

 

Discussion 

The model developed in this work either performed as well or outperformed nearly every model 

that was explored across both traditional computation and machine learning. Those that did 
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perform better had limitations such as being unable to assign permeability failure to one reason. 

While the model achieved a notable accuracy for the passive diffusion of small molecules, it is 

important to recognize that this model does not address permeation via active diffusion. Another 

area to be explored would be to compare this model with one that used drug side effects for 

prediction to include non-passive diffusion predictions. Beyond this, taking away more constants 

within the BBB would bring models closer to a realistic human brain BBB physiology. More 

diverse approaches presently serve as the best approach to improving accuracy and applicability.  

 

The future work on this model will involve organ-on-a-chip biotechnology. Using the simulated 

blood-brain barrier, the model’s applicability can be evaluated in a wet-lab setting. Furthermore, 

components of this project can be stripped and put into new endeavors in the neuroscience field. 

One such application is the neuroinflammation readings through CRP levels being used for the 

diagnosis of neurodegenerative diseases. Lastly, the complete model has the potential to open a 

path into precision and individualized medicine.  

 

Conclusion  

This project offers a unique add-on to modern day research on BBB permeability of drug 

compounds. Its design enables targeted clinical trials that takes away one of many assumptions 

made by pharmaceutical scientists in the drug development process. The ability to gauge within 

certain inflammation ranges opens a new avenue of drugs that could be introduced for diseases 

that cause inflammation in these ranges. Rather than an overarching medication that is suited for 

all patients, various small range neurotherapeutics will mitigate the effects of neurological 

diseases in a much smaller time period. Paralleled with the current work, this will be a notable 

stride in the neuroinformatics and drug discovery industries.  
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