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1 Personal Experience

I began my journey into research in 10th grade (2020). Covid-19 was the style du jour, masks
were all the rage, and I was enrolling in a class at my school called Science Research. This class was
meant to guide students, helping them reach out to experienced mentors in academia and industry.
Initially, I was tasked with finding a broad area of study, for example, cancer, in which I could
later specify and find a niche that fit me precisely. Even at this early stage, however, I was torn. I
had always loved mathematics, but I also adored biology and any topics which had to do with the
human body, and I was struggling with finding a topic that neatly tied the two together. It was
on a random winter day during the weekend, when I went to a diner with my father for breakfast.
There, they had a TV set playing the news, where the latest projected Covid-19 numbers were
being displayed. It was at that point my father suggested to me that I should research disease
models. There was heavy mathematics used in the creation and analysis of these models, while a
strong understanding of diseases and disease epidemiology was required to accurately understand
and implement disease models. After some basic investigation, I was smitten.

For the rest of the year, I became engrossed in epidemiology, learning about compartmental and
agent-based models, disease routes of infection and interventions, and quite excitingly, following the
most up-to-date research on Covid-19. When the summer rolled around, I eagerly sent emails to
research groups working with disease models. A group at NYU Langone’s Translational Research
Department wrote back, and I eagerly began interning at their lab. They worked more on HIV than
Covid-19, however, so for the first summer, I investigated their HIV model, EMOD, and learned
how to interface with it. I also began learning about HIV itself and applied that knowledge to
understanding EMOD. My mentor had also mentioned to me that EMOD, their model, was unable
to allocate money to different disease treatment programs. Including this capability was their next
goal, and so I also began studying optimization algorithms, specifically those used for more complex
problems. I had always loved mathematics, a trait I got from my father, who was trained as an
engineer and had been trying to teach me similarly since I was 3. For my research, I had to learn
advanced linear algebra to understand the optimization techniques used. To this day, there are
still a few finer details I struggle to verbalize. It was also incredibly satisfying to fully grasp and
just understand what was going on after a full day of work. That moment, of comprehension after
immense struggle, was what made the difficulty and challenge worth it.

By the time my 11th grade summer rolled around, I had absorbed enough knowledge from my
mentor, various online sources, as well as some other professors I had reached out to. I felt ready



to begin a project of my own: given an amount of money, a list of interventions (things to do to
reduce the effect of HIV), and a disease model which could simulate different investment strategies,
I needed to find the most efficient investment strategy (which reduced deaths the most). What I
did is detailed in the next section. Research was a fantastic experience for me. It felt more freeing
than the slog of work typical of school, and while it was more difficult, it also felt significantly more
rewarding to work out a kink in an algorithm than to score well on a test. For those of you starting
research as high schoolers, I have a few pointers:

e Do something you love. There are infinite topics on which one can work and if you're spending
most of each day on research, you’d better love it.

e Research is not like schoolwork; you should expect to fail multiple times before you find any
measure of success. If your code works the first time around, something probably went wrong.

e Your mentor is one of the best sources of information, help, and support you could ever ask
for. I was lucky with my mentor, she was incredibly kind and gave me full access to her
team and resources, and I am eternally thankful for how she treated me and the time and
consideration she gave me. While mentors may seem intimidating, they often want to help
and are more than willing to explain complex topics or techniques.

e Packaging and presentation are almost as important as the work itself. The first time one
of my relatives asked me about my work, I stumbled into the densest explanation of disease
models, tensors, and HIV interventions that I could have possibly given. She probably thought
I had no idea what I was talking about. If no one understands your work, it’s almost as if
you haven’t done it.



2 Introduction

Around the world, there exist over 37.9 million people living with HIV (PLHIV), and HIV has
been responsible for over 35 million deaths to-date (UNAIDS, 2021). The most affected region of
Africa is Eastern and Southern Africa, with 20.6 million PLHIV, accounting for around 54% of all
PLHIV (Kharsany, 2016).

Interventions are public health measures taken in order to limit the spread of HIV (Meyer-
Rath, 2019). This can range from treatments, such as Anti-retroviral therapy, to preventatives,
such as Post- and Pre-Exposure Prophylaxis, to additional programs meant to increase awareness
and access to care, like Antenatal Care and Home Counseling and Testing programs. Intervention
programs are expensive; yearly costs for medications can be over $100 USD, and non-medical
interventions, although cheaper, are still not free (Meyer-Rath, 2019). Since 2021, annual resources
for HIV treatment available to Eastern and Southern Africa have decreased by 5%. (Kharsany,
2016). There exists a need for efficient allocation of resources to maximise the impact of every
dollar spent in the region (Kharsany, 2016).

The Optima group has previously used their Optima HIV model in allocative efficiency studies
(Kerr, 2015). The Optima group has published numerous reports on budget optimization, typically
focusing on a single country (Kerr, 2015). In their analyses, the Optima group only seem to focus
on around 7 intervention strategies, while it may be of value to analyze larger intervention portfolios
(Lukoba, 2020). For our work, we will be using the Epidemiological MODeling software (EMOD)
model. Please note that, as opposed to the deterministic Optima model, EMOD is a stochastic
model, which will motivate many of our decisions concerning optimization procedures.

EMOD is a stochastic agent-based model developed by the Institute for Disease Modeling (IDM)
(Bershteyn, 2018). EMOD is designed to be highly modular, allowing for many different diseases
and regions to be simulated, based upon the input files provided to the model (Bershteyn, 2018).
For this work, we will be using two sets of input files, the first modeling HIV in South Africa and the
second modeling HIV in Kenya. These input files were calibrated by Prof. Kim in the Bershteyn
Lab group (Bershteyn, 2018).

EMOD typically takes 15 minutes to complete a simulation, prohibitively long for most opti-
mization algorithms. Case in point, evaluating 100 simulations would take 25 hours to run. In
order to reduce evaluation time, we will use surrogate models to approximate the value of EMOD.
Specifically, we will use a form of surrogate model based on tensor trains.

Tensor trains were originally conceived in a seminal paper by Prof. Ivan Oseledets, as high-
dimensional extensions of the SVD process (Oseledets, 2011). They were further developed in works
by Prof. Alex Gorodetsky and Prof. Youssef M. Marzouk, who used them in approximations of
high-dimensional functions (Bigoni, 2016) (Gorodetsky, 2018). Tensor Trains were also used in work
by Prof. Zheng Zhang in uncertainty quantification (Zhang, 2015). We use tensor trains because
they are highly differentiable, quick to fit and evaluate, and they do not require continuous, online
data gathering for the fitting process (Oseledets, 2011). They can be calibrated with previously
gathered data, which simplifies the fitting process.

In this paper, we propose a framework for intervention optimization based around the EMOD
epidemic model and utilizing surrogate models for fast model evaluations. By using tensor trains,
our framework escapes the curse of dimensionality, and the high differentiability of tensor trains
allows us to use a gradient-based optimization algorithm. Our framework does not use online data
gathering, and can be fit to already-available data.

This paper is organized as follows: In section 3, we describe EMOD in greater detail. In section



4, we define the objective functions and metrics we will be using for the remainder of the paper.
In section 5, we describe the proposed algorithm, and in section 6, we report the results of our
application of the proposed algorithm to two budget optimization problems. We conclude this
paper in section 7, with a discussion on the implication of our results and directions for future
work.

3 Model Description

Epidemic MODel (EMOD) is a stochastic, agent-based disease model (Bershteyn, 2018). EMOD
simulates the propagation of an endemic disease within a population (Bershteyn, 2018). EMOD
has enough degrees of freedom in order to allow the user to accurately fit a variety of populations
and diseases (Bershteyn, 2018). In this paper, we will be using config files that have been calibrated
by Prof. Kim in the Bershteyn Lab group to model the HIV epidemics in both South Africa and
Kenya (Bershteyn, 2018).

Upon specifying a parameter set, EMOD generates a sample population consistent with the input
parameters, and starts the process of modelling the disease propagation among that population
across discrete time steps for a period of 70 years (Bershteyn, 2020). At each time step, there
is a probability that any one agent will transition from one state to the other. For example, a
person who is HIV negative may become HIV positive (Bershteyn, 2020). A single sample results
in one potential path for disease propagation. To minimize the effect of randomness, EMOD runs
50 samples for each set of input parameters. The results are then averaged in order to get a single
final result for a given simulation (Bershteyn, 2018).

Within EMOD, there are certain interventions which can be used to limit the spread and effect
of HIV. In this paper, we will deal with 5 interventions: Anti-Retroviral Therapy (ART), Pre-
Exposure Prophylaxis (PrEP), Voluntary Male Medical Circumcision (VMMC), Ante-Natal Care
(ANC) and Home Counseling and Testing (HCT). AntiRetroviral Therapy (ART) is a medication
taken by PLHIV, which, after being taken for a short period of time, lowers the amount of HIV
found in their bodies, to undetectable levels, meaning that PLHIV on ART can live as if they do
not have HIV (Meyer-Rath, 2019). Pre-Exposure Prophylaxis (PrEP) is a medication that is taken
by those who do not have HIV and greatly reduces their chances of infection upon exposure to
HIV (Meyer-Rath, 2019). People on PrEP are typically high-risk individuals (Meyer-Rath, 2019).
Voluntary Male Medical Circumcision (VMMO) is a form of circumcision that lowers the chance for
a man to both receive and transmit HIV (Meyer-Rath, 2019). Ante-Natal Care (ANC) is a form
of testing and medication given to pregnant women to reduce their probability of passing HIV to
their child (Meyer-Rath, 2019). Home Counseling and Testing (HCT) is a form of outreach which
reaches people about the symptoms of HIV and encourages them to get tested (Meyer-Rath, 2019).

4 Fitness Functions

Money is a limiting factor for the interventions that can be implemented within any population,
so figuring out the combination of interventions that best reduces HIV-attributed death for any
given amount of money is a matter of life or death (Sharma, 2021).

Cost is the total amount of money spent on interventions past a threshold year, ¢g

Total Cost = Z Z(Nti * Cy x dft—10)

t %



N;j; is the number of times intervention ¢ is given in year {. We can obtain this from the
simulation results, C; is the per-unit cost for intervention ¢ (Meyer-Rath, 2019). df is the decay
factor, typically 0.97. This factor is applied to the product to mitigate uncertainty caused by
randomness.

To compute HIV-attributed death we use a quantity called disability adjusted life years (DALYS).
Given a PLHIV who has died from HIV, DALYs are calculated by taking their life expectancy and
subtracting their lifespan. In short, DALYs are the measure of how many years were taken from
them due to HIV.

We begin counting DALYSs after ¢y. For each person who died due to HIV:

DALYs = Z(LExpected - LRealized) * dft_to

t is the time of death, in years. Lgypected is the expected lifespan, which we obtain from UN
average lifespan measures (United Nations, 2019). Lgealized is the actual lifespan, which we obtain
from the simulation results df is defined as before.

Our optimization problem is as follows:

min DALY (21,22, Tn_1)

T, L1 Tn—1 (1)

s.t.  Cost(xy, 29, - x,—1) < Budget

5 Proposed Algorithm

Our goal is to find the optimal investment strategy to minimize DALYs under certain budget
constraints. We implement our analysis within the EMOD framework.

Each parameter represents a probability of an agent moving from one state to another. There-
fore, all our parameters range between [0-1]. Note that although some parameters accept an range
of 0-1, it does not make practical sense for them to take on certain values, so we will limit their
input range.

We define the optimal investment strategy as a set of input parameters to EMOD. This set of
input parameters controls the usage of interventions. Note that these parameters do not represent
population characteristics or disease characteristics. For the purpose of describing our algorithm to
solve the above optimization problem, we will focus on the three main interventions, ART, PrEP,
and VMMC. In the results section, we will give examples where we have many more interventions.

To solve the optimization problem, we naturally need to run many simulations corresponding to
different parameter sets. As previously stated, each such simulation takes approximately 15 minutes
to run. This results in an extremely slow optimization problem. In order to reduce the time needed
to solve the optimization problem, we propose to use a surrogate model-based approach.

In this approach, we approximate the EMOD simulation using a surrogate model. That model
typically less than one second to evaluate. After each optimization cycle (which involves many
evaluations of the surrogate model), we reach a hypothesized optima. To iterate, this optima
is based on the surrogate model and may or may not hold true under the EMOD simulation. To
mitigate uncertainty, we simulate this optima using the EMOD simulation. If the EMOD simulation
agrees that the hypothesized optima is indeed optimal, then we stop our algorithm. Otherwise, we
refit our surrogate model on the new data, and rerun the optimization algorithm. Therefore, the
main algorithm consists of the following steps:



1. An initial sampling of parameter space to obtain ‘training’ data.
2. While True:

a) Construct surrogate models using the training data.

(
(b
(c
(

) Find the optimal allocation policy using the surrogate models.

)
d) If the simulation output satisfies our stopping criteria, BREAK.

)

Simulate this hypothesized optimum.

(e) Otherwise, augment training data using new data and loop.

There are two important ingredients to make the above work. First is the optimization al-
gorithm. For that, we use Newton’s algorithm (a gradient-based algorithm). This algorithm is
explained in section 5.2. The second ingredient is the surrogate model. For that we use Tensor
Trains as described in the following section.

5.1 Tensor Train

The surrogate model’s aim is to mimic the forward simulation, evaluating in a fraction of the
time, yet preserving as much accuracy as possible. For that, we use tensor trains (Oseledets, 2011).

The main reason behind using tensor trains is that it allows us to find a high-dimensional
surrogate model while breaking the curse of dimensionality (Oseledets, 2011). The number of
degrees of freedom to fit the model grows linearly with the number of input parameters (and not
exponentially) (Oseledets, 2011).

A tensor train is an approximation of a complex model in terms of the product of univariate
matrix functions. This can be interpreted in the context of separation of variables and/or high-
dimensional SVD:

flzo, 21, Tpe1) = GE(20)G1(21) - G (Tp—1)

k
Gi(x;) = Z bi(z:)Cij
=0

G(z;) is a matrix function of the variable x;, and is of dimension r; x ;1. Note that ro = r,, = 1.
This means that the end product of all the G;(z;)’s is a scalar. We chose to approximate these

J
matrix functions in terms of monomial basis functions, where b;(z;) = 3;—, and Cj; is the coefficient
matrix of dimension r; X 7;41. Fitting the surrogate model involves computing all C;; in order to
best approximate f(zg, 1, Tp_1)-

5.1.1 Fitting Procedure

To fit our model, we need data. We use an offline procedure to collect outputs from EMOD
corresponding to random samples of the parameter space. Then, we solve the following nonlinear
least squares optimization problem:

min Z(f(l’gl, 7x2171)_f(1.6n7,__ 7x:zn71))2 (2)

Cij %



Where f(zJ,--- , 2™ ;) is output of the EMOD simulation and 2™ refers to the m*™® observation.
We will now intentionally drop the m superscript in order to simplify the following explanation,
but we will restore it at the end.

This problem is a nonlinear optimization problem, and we use an iterative algorithm to solve
this optimization. As stated above, f(zo, - ,&n_1) = GT (20)G1(21) - - Gn_1(2n_1). Attempting
to solve for all C;; simultaneously results in a nonlinear least squares problem. Instead, we will
iterate over 7, and for each ¢, we will fix all unknowns before and after G;(z;), and we will solve for
G;(z;) individually. Each G;(x;) a linear combination of unknown coefficient matrices, which we
can reformulate into a linear least squares solve:

G (w0) -+ Gi(wi) -+ Gnoa(wn—1) = f(wo, -+, Tp_1)

We define u?’ = G¥ (z0) -+ Gi_1(z;—1) and v = Gip1(iz1) - Gn1(z—1). We can also expand
k
Gz(xz) = ijo bj(xz)C”

UT(bo(xi)Cz‘,o +--+ bkﬂ(%)@,kfl)V = f(x(h ce axnfl)
(T @ uT) vec(bo(zi)Cio + -+ + br—1(x;)Ci p—1) = vee(f (o, -+ ,Tn-1))

We define b” = [bg(z;), -, bg—1(x:)]T

(v @u” @ b)) [vec(Ci o), ,vec(Cir_1)] = vec(f(o, - ,Tn_1))

We now have the form of a linear least squares solve. We can repeat the same analysis for ever
one of the sample points. We then assemble those equations into a linear system of equations of
the form:

Alvec(Ci),- -+ ,vee(Cik—1)] =y

Where the m'™ row of A is vI' @ u?” ® b” and the m'" row of y is f(zo, -+ ,Zn_1).

Solving this least squares problem will yield the desired coefficient matrices for only a single
Gi(z;). We will then iterate over all G;(x;) multiple times, fitting each G;(z;) to the available data.
We then terminate this iteration after reaching desired accuracy, where we define the accuracy based
on two measures. The first measure is the Ly error in predicting the data. The second measure is
the change in coeflicients from one iteration to the next. It should be mentioned that, before the
least squares solve is performed, a preconditioner is applied to A. This preconditioner is a diagonal
matrix which reduces the magnitude of the entries of A, mitigating the chance of numerical error
when performing the least squares solve. This preconditioner, P, has diagonal entries p;; = leA,
where max A denotes the largest entry of A.

Note that our b;(z;)’s did not necessarily need to be monomials. We could have replaced the
monomials with orthogonal polynomials (e.g. Hermite polynomials, Legendre polynomials, etc.),
and utilized the same process.



5.1.2 Application

We apply the above fitting procedure to fit two separate functions. The first function is for
DALYs as a function of the parameters controlling the intervention policy. We will refer to that
function with fD ALy (x). The second function is for Cost as a function of the parameters controlling
the intervention policy. We will refer to that function as fc()st(x). As will be seen in section 6, we
managed to construct high-dimensional surrogate models, up to 42 dimensions. We believe that
the proposed fitting algorithm can scale up to hundreds of parameters.

5.2 Optimization Algorithm

As part of our proposed algorithm, we require an optimization algorithm to find hypothesized
optima. We will use Newton’s algorithm (a gradient-based approach) for optimization.
First, we transform our constrained optimization problem using Lagrange multipliers.

n—1
1
Lower Bound Penalty = LBP(x) = Z exp ((Zb — x2)>
i=0 Ao

n—1
1
Upper Bound Penalty = UBP(x) = Z exp ((xl - ub))
i=0 M

Budget Penalty = BP(x) = exp <)\12(f005t(x) - B))

Where Mg, A1, and Ay are Lagrange multipliers, [b and ub are lower and upper bounds on the
parameters, and B is the budget constaint. Our optimization algorithm will therefore aim to solve
the following problem:

min U(x) = foary(x) + LBP(x) + UBP(x) + BP(x) (3)
Recall that Newton’s algorithm is a gradient-based algorithm where the solution at every step
is incrementally updated using the following update function:
Xe41 =X¢ — H ™'

Where £ is the index of the iteration, x, is the current estimate of the solution, x,41 is the
updated guess to the solution, H ! is the inverse of the Hessian matrix, and j is the Jacobian. The
Jacobian is a vector of length n and the Hessian is a matrix of size n x n. The elements of the
Jacobian are:

.U
Ji = ox,

(xe)

The elements of the Hessian are:

9*U
HZ" B (9Xi8Xj (XZ)




We stop once our update of x becomes smaller than a certain threshold. Please note that one of
the main advantages of using a tensor train-based surrogate model is that it is very easy to compute
the derivatives.

6 Results

In this section, we will discuss the application of our algorithm to two separate problems. First,
on identifying optimal intervention policies to for HIV in South Africa. Second, on identifying opti-
mal intervention policies to for HIV in Kenya. The first problem will be referred to as South Africa,
and the second problem will be referred to as Kenya. The South Africa problem is parameterized
using 11 parameters, and the Kenya problem is parameterized using 42 parameters. For each of the
two problems, we will explain the processes of data gathering, tensor train fitting, and the identified
optimal allocation policies.

To run each simulation, we use a config file calibrated by Prof. Kim in the Bershteyn Lab group
(Bershteyn, 2018). As mentioned above, the config files allow us to accurately simulate HIV spread
within their respective countries. The parameters that we change only control the intervention
policies, but do not affect population demographics or HIV behavior. Please note that some of the
changes we do to the parameters may be hard to implement in real life. That does not undermine
the validity of the final results, but slightly increases the difficulty of a real-world implementation.
With that being said, our algorithm is flexible enough to allow tighter constrains on the parameters
in order to better mimic real-life constraints. We leave this refinement up to the public health
experts.

6.1 HIV in South Africa

6.1.1 Parameter Descriptions

We identified 11 parameters which controlled the coverage of intervention policies: 6 for ART,
1 for VMMC, 1 for PrEP, and 3 for HCT.
These parameters are listed in table 6.1.1:

Table 1: List of Parameters for South Africa Model Healthcare System

Parameter Name Parameter Description Default Value ‘ Range ‘
PresProb Prob. a symptomatic agent gets HIV test 0.94 [0,1]
Child_6w Prob. 6-week-old child gets HIV test 0.337 [0,1]

TestUptake Increased rate of testing after 2009 0.9 [0,1]
Staging Prob. agent begins ART Staging 0.837 [0,1]
PreART Prob. agent continues PreART 0.75 [0,1]
FastART Prob. agent begins ART after 2016 0.95 [0,1]
On_ART Prob. agent who re-enrolls for ART 0.9 [0,1]

KeepART Prob. agent keeps using ART after 2016 0.9 [0,1]

ARTInterrupted Prob. ART is interrupted 0.2 [0,0.2]

PrEP Prob. HIV negative agent begins to use PrEP 0.15 [0,1]
VMMC VMMUC coverage over the male population 0.8 [0,1]




6.1.2 Surrogate Model Fitting

We will start by fitting a surrogate model. To do that, we start our process by running simula-
tions on 1000 randomly sampled points in the parameter space, and generating the corresponding
Cost and DALY outputs. Then we fit two surrogate models; one for Cost and one for DALYs.

We choose the same specifications for both surrogate models, namely, rank r; = 5 and order
k = 4, yielding a third-order polynomial approximation.

Our choices of 1000 samples and the rank and order of approximation has been determined
based on both available computational resources and sensitivity analyses to ensure robustness of
our results. A rank of 5 and third-order polynomials produced the most accurate model while
avoiding overfitting to the available data.

We defined the surrogate model error as the Lo norm of the difference of the sampled points
from the training data divided by the Ly norm of the training data:

1£(x) — £(x)|
£ ()]

The model achieved an error of under 1% for both Cost and DALY. The error was 0.29% for
the Cost model, and 0.91% for the DALY model. The surrogate typically took 2 minutes to train
on 50 iterations of 1000 training points, and evaluated a single data point in under 100 ms. This
represents a run time close to 4 orders of magnitude faster than the base EMOD model.

Error =

6.1.3 Optimal Allocation

We implemented the proposed algorithm as described in the previous section, with a cost con-
straint of $1M. The Cost and DALY combinations generated, compared to those generated ran-
domly, are found in 1.

Cost vs. DALY
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Figure 1: Graph of Cost vs DALY for both Random and Chosen Points

The above graph shows 1000 randomized points in orange, comparing the cost for each simulation
with the DALY count for that simulation. In blue are the points computed with our algorithm. The
most notable feature is the ‘tail’ of blue points on the bottom left of the graph, which represents the
convergent behavior of the algorithm: all these points carry a low DALY measure and are very close
to the cost constraint of $1M. The scattered points across the bottom and right represent points
where our surrogate models made certain inaccurate predictions. In those cases, our algorithm
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was able to take advantage of these inaccuracies and use them to reinforce the accuracy of our
surrogates.

We wanted to evaluate the effect of increased budget on DALY Count and optimal parameters
of the intervention policies. To achieve that, we changed the allotted budget from $1M to $3M in
steps of $500K. The results of these runs are shown in Figure 2.

DALY Count vs. Incurred Cost on Sampled Simulations
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Figure 2: Graph of Cost vs DALYs for Varied Budgets

We have multiple observations. The DALY count was relatively stable, ranging from 2416 to
2470, a small variance relative to the possible range of DALYs. For small budgets, ART is by far
the most cost-effective policy, while PrEP remains at zero. For larger budgets, PrEP becomes more
cost-effective. One surprising observation is that our algorithm sometimes terminates at optimal
points that do not use all the allowed budget. For example, even though we set a budget of $3M,
the algorithm has terminated at both $1.1M and $2M. We studied this observation and found that
there are 5 different local minima at which the algorithm terminates. In Table 6.1.3, we give the
parameter set yielding the best point within each cluster and the corresponding DALY count and
Cost.

Table 2: Parameter and Output Values for South Africa Model Clusters

Parameter Name Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
KeepART 1 1 1 1 1
TestUptake 1 1 1 1 1
FastART 0.423 0.567 0.623 0.003 0.304
PresProb 1 1 1 1 1
Child_6w 1 0.743 0.31 0.802 0.998
Staging 1 0.979 1 1 1
PreART 1 1 1 1 1
On_ART 1 1 1 1 1
VMMC 0.016 1 0.64 1 0.003
PrEP 0 0.05 0.12 0.186 0.247
ARTInterrupted 0.2 0.129 0.071 0.035 0
Cost $1,113,055.47 | $1,465,936.00 | $1,978,418.95 | $2,513,331.67 | $2,985,608.23
DALY 2,470.75 2,461.45 2,417.12 2,442.63 2,416.71
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It seems that ART is the most heavily emphasized intervention, with 3 different parameters set
to 1 between all 5 clusters. HCT is a close second, with 2 parameters set to 1 between all 5 clusters.
This may be due to the way they work within the simulation. ART is a medication taken by those
with HIV which extends their lifespan while preventing them from passing HIV on to other people.
This has a dual-effect in reducing DALY, limiting the DALY's created from their own deaths while
limiting the DALY's created from the deaths of others. Testing works by taking those who may not
know they have HIV, and putting them in a position where they have the option to get treated. It
is also relatively inexpensive compared to the other interventions, meaning that, even with a lower
reduction in DALYs than other medications, it can still be more cost-effective as it is cheaper.

PrEP, on the other hand, begins with 0 investment, and slowly increases as the total amount
of money spent increases. PrEP is a preventative, taken by those without HIV, which protects
them from catching HIV. This has an impact compared to other medications only if the number of
people catching HIV is creating more DALY than those already with HIV. PrEP is also expensive,
meaning that it needs to have a very large impact in order to be cost-effective. It seems like this is
not the environment of the South Africa model.

6.2 HIV in Kenya
6.2.1 Parameter Descriptions

In the Kenya disease model, there exist 42 parameters which control the available interventions:
6 parameters for ART, 18 parameters for VMMC, 12 parameters for PrEP, 4 parameters for HCT,
and 2 parameters for ANC.

6.2.2 Surrogate Model Fitting

As with the South Africa problen, we fit two surrogate models, one for Cost and one for DALY's.
The surrogate models were fit with 1000 randomly generated points, which took EMOD 2 days
to evaluate. Initially, we chose rank r; = 5 and order k = 4, yielding a third-order polynomial
approximation with matrix coefficients of shape 5 x 5. Upon beginning optimization using Newton’s
method, this tensor train structure had too many unknown coefficients to solve for, as compared
to the surrogate models used in the South Africa example. This led to overfitting the surrogate
models to the available data, meaning that the surrogate’s projections became unreliable. Outputs
ranged from -10'2 to 10'? and were not accurate to EMOD. As a result, r; was reduced to 3, and
k was reduced to 2, yielding a linear function for each variable, with coefficients matrices of shape
2 x 2. This greatly reduced the number of free variables, mitigating the overfitting.
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6.2.3 Optimal Allocation

We implemented the proposed algorithm as described in the previous section, with a cost con-
straint of $3M. The Cost and DALY combinations computed by the framework, compared to those
generated randomly, are found in Figure 3.
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Figure 3: Graph of Cost vs DALYs for Varied Budgets

As before, there are some points dispersed in suboptimal areas with high DALY counts and varied
Costs. These are points where the framework has predicted inaccurately, and is able to update its
predictions based on the real EMOD value. Notably, there is a thick cluster of points ranging
between $2M budget and $3M budget with low DALY counts, ranging from the low thousands up
to 10k DALYs. This region is highlighted in Figure 4.
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Figure 4: Graph of Cost vs DALYs for Optimal Simulations in Kenya

The most optimal points range in DALY counts from 1800 to 2500, a value significantly lower
than the randomly generated simulations. Optimal Cost also ranges between $2.4M to $3M, well
within our allowed budget of $3M. Notably, there are no clusters within the located points. There
is only a scattering of lower values spread out fairly evenly within the area. Importantly, while all
of these points have low DALY counts, the predictions that the surrogate models made were not
accurate within this region, as shown in Figure 5.
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Figure 5: Graph of Cost vs DALY's for Surrogate Projections Compared to EMOD Values in Kenya

The surrogate models predicted DALY values in the 10k range, but EMOD actually returned
DALY values near 2k DALYs. This is most likely because we used a linear model for each term
in the tensor train. Compared to cubic polynomials, which we were using for the South Africa
problem, linear polynomials have less ability to model complex behavior of a single parameter.
They would tend to model the bulk of the data while ignoring the fringe behavior. In our case, the
DALY values of the points used for fitting range from 10k DALYs to 70K DALYs. It could make
sense for a model with relatively few parameters to stick to the bulk of the data, precisely this
range. Points with low DALY counts are abnormal, which could explain why the surrogate models
drastically overestimate the DALY count of low-DALY points.

It should be remembered that these points, while having high predicted DALY (as predicted
by the surrogate), still had low DALYs when evaluated by EMOD. This is probably due to the
fact that a gradient-based optimization algorithm was used. The algorithm was able to accurately
traverse the surrogate models to a place of relative minimum, and although the actual value of
this relative minimum was overestimated, it was a relative minimum nonetheless, in the surrogate
model’s estimation and within EMOD as well.

The Cost within this range is predicted accurately, which would align with our explanation. The
Cost of the randomly generated points ranges from $2M to $3.25M, and our predicted Costs landed
within the middle of this range. A model with few degrees of freedom may be able to predict Costs
accurately if they fall within the range of the Costs used to fit the model.

7 Conclusions & Future Work

In this project, we were able to construct a framework for HIV intervention optimization which
greatly reduced the number of DALY's computed within the EMOD simulation tool. Our framework
is able to adapt to various price points and recommend optimal investment strategies for each one.
Our framework is also self-improving, in that it was able to either locate an optima with respect
to the main EMOD model, and if not, it improved upon its accuracy and predictive ability. This
framework is highly customizable in terms of metaparameters and since it is not specific to HIV
models, it can be applied to a variety of optimization problems. It is powerful enough to solve high-
dimensional problems (d > 40), and reports a variety of results to the end user. It uses a gradient-
based optimization algorithm which takes advantage of the surrogate model’s differentiability and
low evaluation time. It can be fit to already-existent data.
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In terms of optimal investment, it seems that ART and HCT are the most cost effective interven-
tions which should be prioritized on a limited budget. Preventative medications like PrEP, however,
should be skipped out when strapped for cash, but as available funding increases, investment should
increase.

This work can be extended in a number of ways. First and foremost, it should be taken by a
public health researcher and applied to a realistic example of HIV. In this project, the parameters
used for each application represented the maximum possible reach over each country’s healthcare
system. In reality, South Africa may be less able to give ART medication and more able to give
HCT kits. This would be represented by bounds on the values of the corresponding parameters
easily inputted into the existing software. Additionally, this framework should be tested on other
models and optimization problems. It is not specific to HIV models, or disease models as a whole,
and is instead general. It can be applied to any form of optimization problem, and should be tested
as such.
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